首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
In the recently developed Nearest-Nodes Finite Element Method (NN-FEM), elements are mainly used for numerical integration; while shape functions are constructed in a similar way as in meshless methods. Based on this strategy, NN-FEM inherits major merits from both the classical Finite Element Method and meshless methods. One of them is that NN-FEM is nearly not affected by element distortion. So NN-FEM is more efficient than the classical FEM on dealing with large deformation problems. Nevertheless, NN-FEM still has a requirement on finite element meshes, that is, elements in a mesh are required not to overlap or penetrate to each other, to avoid difficulty in numerical integration. To eliminate overlapped elements, NN-FEM is supplemented with an algorithm for updating element connectivity. With this supplement, NN-FEM is able to deal with extremely large deformation. In updating element connectivity, element nodes are kept not changed and all information associated with nodes are not touched. Therefore, there is no need to transfer solution data, and error introduced by solution transfer is avoided.  相似文献   

2.
Many systems in engineering and science are inherently nonlinear and require damage detection. For such systems, nonlinear damage detection methods may be useful. A bifurcation boundary analysis method as a new nonlinear damage detection tool was previously introduced in the literature to track bifurcation boundary changes due to damages over a small region of an aeroelastic panel model. Results of this method based upon a finite difference solution showed higher sensitivities to the small amount of damage than methods based upon linear models. In this paper, four methods including Finite Difference, Finite Element (FEM), Rayleigh-Ritz and Galerkin Approach are used to further investigate the sensitivity of the bifurcation boundary for damage detection. Results of the FEM and Rayleigh-Ritz method agree with each other and also show that the sensitivity of the bifurcation boundary to damage is much less than what previously reported when using a finite difference solution method.  相似文献   

3.
有限单元法在航空航天领域中应用极其广泛.航空航天专业有限单元法课程应针对其课程特 点而开设,重构课程体系,注重理论联系实际,将教学重心从以往的理论教学转变为应用教 学.文中还给出了在航空航天结构有限单元法教学中应涉及的几个实例.  相似文献   

4.
Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed.  相似文献   

5.
本文给出了用有限域法进行了和学应力分析的一般原理,并与目前广泛采用的有限元不做了比较。文中的研究表明:有限域法与有限元法极为相似,前者使用单位位移加权,后者从虚位移原理出发;两种方法的实施过程也有共同点,它们都进行网络部分及逼近。  相似文献   

6.
用扩展有限元法XFEM(Extended Finite Element Method)解决夹杂问题时,夹杂与基质的界面把单元分成若干部分.求单元刚度矩阵时,需要分别在这各个部分求积分.找到便于程序编制的描述各积分区域几何形状的方法是亟待解决的问题.本文把各积分区域的形成过程看成是圆对四边形的多次切割.考虑切剩区域与圆的关系时,把不完整的边仍看作完整的边,把切剩区域看成是四边形或是切去一两条边的四边形.采用排列组合的方法,把它们与圆的所有位置关系列了出来.  相似文献   

7.
In this paper we use an eXtended Finite Element Method based model for the simulation of shear fracture in fully saturated porous materials. The fracture is incorporated as a strong discontinuity in the displacement field by exploiting the partition of unity property of finite element shape functions. The pressure is assumed to be continuous across the fracture. However, the pressure gradient, i.e. the fluid flow, can be discontinuous. The failure process is described by the cohesive zone approach and a Tresca fracture condition without dilatancy. We investigate the propagation of a shear fracture under compression asking the question whether or not a Tresca criterion can result in stepwise propagation in a poroelastic medium. In order to evaluate possible numerical artefacts, we also look at the influence of the element size and the magnitude of a time increment. The performance of the X-FEM model and the influence of the pore pressure on the fracture propagation are addressed. Our simulations do not show evidence for step wise progression in mode II failure.  相似文献   

8.
采用有限元法与工程梁理论混合分析方法 ,对偏心载荷作用下的连接件结构进行了细节应力分析 ,确立了其疲劳危险部位。并采用应力严重系数法估算了其疲劳寿命。最后应用模拟结构进行了实验研究 ,结果表明与理论分析吻合良好  相似文献   

9.
A mean field mechanical model describing the inelastic behavior and strong anisotropy of Directionally Solidified (DS) materials is developed. Its material parameters are calibrated by comparison with the Finite Element (FE) computation of a Representative Volume Element (RVE). In the case of a large grain alloy where microstructure size cannot be neglected with respect to geometrical variations, this approach is a good candidate to evaluate the local scatter coming from the material heterogeneity.  相似文献   

10.
In order to avoid the numerical difficulties in locally enforcing the incompressibility constraint using the displacement formulation of the Finite Element Method, slight compressibility is typically assumed when simulating transversely isotropic, soft tissue. The current standard method of accounting for slight compressibility of hyperelastic soft tissue assumes an additive decomposition of the strain-energy function into a volumetric and a deviatoric part. This has been shown, however, to be inconsistent with the linear theory for anisotropic materials. It is further shown here that, under hydrostatic tension or compression, a transversely isotropic cube modelled using this additive split is simply deformed into another cube regardless of the size of the deformation, in contravention of the physics of the problem. A remedy for these defects is proposed here: the trace of the Cauchy stress is assumed linear in both volume change and fibre stretch. The general form of the strain-energy function consistent with this model is obtained and is shown to be a generalisation of the current standard model. A specific example is used to clearly demonstrate the differences in behaviour between the two models in hydrostatic tension and compression.  相似文献   

11.
基于有限断裂法和比例边界有限元法提出了一种裂缝开裂过程模拟的数值模型。采用基于有限断裂法的混合断裂准则作为起裂及扩展的判断标准,当最大环向应力和能量释放率同时达到其临界值时,裂缝扩展。结合多边形比例边界有限元法,可以半解析地求解裂尖区域附近的应力场和位移场,在裂尖附近无需富集即可获得高精度的解。计算能量释放率时,只需将裂尖多边形内的裂尖位置局部调整,无需改变整体网格的分布,网格重剖分的工作量降至最少。裂缝扩展步长通过混合断裂准则确定,避免了人为假设的随意性,并可以实现裂缝变步长扩展的模拟,更符合实际情况。通过对四点剪切梁的复合型裂缝扩展过程的模拟,对本文模型进行了验证,并应用于重力坝模型的裂缝扩展模拟,计算结果表明,本文提出的模型简单易行且精度较高。  相似文献   

12.
王震  赵阳 《计算力学学报》2014,31(3):378-383
向量式有限元是以向量力学理论为分析基础并基于点值描述来获得结构体系行为的新型分析方法。在简要介绍向量式有限元三角形膜单元基本理论的基础上,针对膜材与刚体、膜材与膜材两类碰撞接触问题,提出了碰撞检测和碰撞响应的处理方法。通过膜材质点与三角形网格面之间的单向碰撞检测方法来处理膜结构的碰撞检测问题;结合罚函数法和中央差分位移式,提出基于中央差分式的罚接触力响应方法,同时赋予罚参数的选取规则,以处理膜结构的碰撞响应问题。在此基础上编制了向量式有限元膜单元的碰撞接触分析程序,并通过算例分析验证了理论推导和编制程序的可靠性和计算稳定性,体现出向量式有限元方法进行膜材碰撞接触分析的优势。  相似文献   

13.
Summary  This paper presents the solution of geometrically nonlinear problems in solid mechanics by the Domain-Boundary Element Method. Because of the Total-Lagrange approach, the arising domain and boundary integrals are evaluated in the undeformed configuration. Therefore, the system matrices remain unchanged during the solution procedure, and their time-consuming computation needs to be performed only once. While the integral equations for axisymmetric finite deformation problems will be derived in detail, the basic ideas of the formulation in two and three dimensions can be found in [1]. The present formulation includes torsional problems with finite deformations, where additional terms arise due to the curvilinear coordinate system. A Newton–Raphson scheme is used to solve the nonlinear set of equations. This involves the solution of a large system of linear equations, which has been a very time-consuming task in former implementations, [1, 2]. In this work, an iterative solver, i.e. the generalized minimum residual method, is used within the Newton–Raphson algorithm, which leads to a significant reduction of the computation time. Finally, numerical examples will be given for axisymmetric and two/three-dimensional problems. Received 29 August 2000; accepted for publication 10 October 2000  相似文献   

14.
This paper presents a stable formulation for the advection–diffusion equation based on the Generalized (or eXtended) Finite Element Method, GFEM (or X‐FEM). Using enrichment functions that represent the exponential character of the exact solution, smooth numerical solutions are obtained for problems with steep gradients and high Péclet numbers in one‐ and two‐dimensions. In contrast with traditional stabilized methods that require the construction of stability parameters and stabilization terms, the present work avoids numerical instabilities by improving the classical Galerkin solution with enrichment functions (that need not be polynomials) using GFEM, which is an instance of the partition of unity framework. This work also presents a strategy for constructing enrichment functions for problems involving complex geometries by employing a global–local‐type approach. Representative numerical results are presented to illustrate the performance of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we extend the Particle Finite Element Method (PFEM) to multi‐fluid flow problems with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking interfaces. We develop a numerical scheme able to deal with large jumps in the physical properties, included surface tension, and able to accurately represent all types of discontinuities in the flow variables. The scheme is based on decoupling the velocity and pressure variables through a pressure segregation method that takes into account the interface conditions. The interface is defined to be aligned with the moving mesh, so that it remains sharp along time, and pressure degrees of freedom are duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity. Furthermore, the mesh is refined in the vicinity of the interface to improve the accuracy and the efficiency of the computations. We apply the resulting scheme to the benchmark problem of a two‐dimensional bubble rising in a liquid column presented in Hysing et al. (International Journal for Numerical Methods in Fluids 2009; 60 : 1259–1288), and propose two breakup and coalescence problems to assess the ability of a multi‐fluid code to model topology changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
随着计算科学的发展,研究人员为探索流固耦合问题的物理机理而提出了众多的数值方法。其中,耦合的移动粒子半隐式方法 MPS(Moving Particle Semi-Implicit method)和有限单元法FEM(Finite Element method)为流固耦合问题的数值仿真工作提供了新的途径。本文所有流场的数值模拟工作均采用课题组自主开发的无网格法求解器MLParticle-SJTU来完成。该求解器在原始的MPS法基础上,对核函数、压力梯度模型、压力泊松方程的求解和自由面判断方式等方面进行了改进。此外,在该求解器框架内,基于FEM法拓展了针对结构场进行求解的功能。首先,对MPS和FEM方法的理论模型及其耦合策略进行了介绍。然后,采用该自研MPS-FEM耦合求解器,数值模拟了溃坝流动对弹性结构的冲击及其相互作用的标准问题。通过将结构变形及自由面波型变化等结果与已发表结果进行对比,验证了该求解器在处理带自由面剧烈变化的粘性流体和柔性变形结构的耦合作用问题上的可行性。  相似文献   

17.
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.  相似文献   

18.
姚环  简文彬  沈骅  秦刚 《力学学报》2006,14(3):301-306
岩质高边坡稳定性的分析评价涉及工程地质学、岩体力学、计算科学等多学科交汇的问题,是一较为复杂的系统工程问题。在系统分析岩质高边坡赋存的地质背景和环境条件的基础上,采用系统分析评价、综合集成的方法应是研究分析和解决该问题的有效和最佳方法。针对漳—龙高速公路石崆山Ⅱ段岩质高边坡工程,在系统分析边坡工程地质特性的基础上,采用赤平极射投影法和有限单元(FEM)法等,进行综合评价和系统分析,获得的稳定性结论,已正常运营使用若干年,反映了系统分析,综合评价方法是成功和有效的。它表明,综合评价、系统分析应是岩质高边坡稳定性评价分析的重要途径;它的综合内容和集成方式及其完善与工程实用性,有待进一步深入的研究和工程实践的运用及其经验的积累。  相似文献   

19.
Numerical analysis of pulsatile blood flow in healthy, stenosed, and stented carotid arteries is performed with the aim of identifying hemodynamic factors in the initiation, growth, and the potential of leading to severe occlusions of a diseased artery. The Immersed Finite Element Method is adopted for this study to conveniently incorporate various geometrical shapes of arteries without remeshing. Our computational results provide detailed quantitative analysis on the blood flow pattern, wall shear stress, particle residence time, and oscillatory shear index. The analysis of these parameters leads to a better understanding of blood clot formation and its localization in a stenosed and a stented carotid artery. A healthy artery is also studied to establish a baseline comparison. This analysis will assist in developing treatments for diseased arteries and novel stent designs to reduce restenosis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A modification of Taylor-Galerkin Finite Element Method and its application   总被引:1,自引:1,他引:0  
Two basic hypothesises of Taylor-Galerkin Finite Element Method are studied in this paper.One of them which is unreasonable is redefined.The only hypothesis becomes the standpoint of Generalized Finite Element.We use this idea to analysis stream function-vorticity equations with Modified Taylor-Galerkin Finite Element Method,and give the two-step solving method,which makes the solving process more reasonable than ever before.Several computational examples reveal that the results of this new method are satisfied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号