首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In a previous work (Int. J. Numer. Meth. Fluids 2007; 55 :867–897), we presented a two‐phase level set method to simulate air/water turbulent flows using curvilinear body‐fitted grids for ship hydrodynamics problems. This two‐phase level set method explicitly enforces jump conditions across the interface, thus resulting in a fully coupled representation of the air/water flow. Though the method works well with multiblock curvilinear grids, severe robustness problems were found when attempting to use it with overset grids. The problem was tracked to small unphysical level set discontinuities across the overset grids with large differences in curvature. Though negligible for single‐phase approaches, the problem magnifies with large density differences between the phases, causing computation failures. In this paper, we present a geometry‐based level set method for curvilinear overset grids that overcomes these difficulties. The level set transport and reinitialization equations are not discretized along grid coordinates, but along the upwind streamline and level set gradient directions, respectively. The method is essentially an unstructured approach that is transparent to the differences between overset grids, but still the discretization is under the framework of a finite differences approach. As a result, significant improvements in robustness and to a less extent in accuracy are achieved for the level set function interpolation between overset grids, especially with big differences in grid curvature. Example tests are shown for the case of bow breaking waves around the surface combatant model David Taylor Model Basin (DTMB) 5415 and for the steady‐state ONR Tumblehome DTMB 5613 with superstructure. In the first case, the results are compared against experimental data available and in the second against results of a semi‐coupled method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
动网格生成技术及非定常计算方法进展综述   总被引:17,自引:1,他引:16  
对应用于飞行器非定常运动的数值计算方法(包括动态网格技术和相应的数值离散格式)进行了综述.根据网格拓扑结构的不同,重点论述了基于结构网格的非定常计算方法和基于非结构/混合网格的非定常计算方法,比较了各种方法的优缺点.在基于结构网格的非定常计算方法中,重点介绍了刚性运动网格技术、超限插值动态网格技术、重叠动网格技术、滑移动网格技术等动态结构网格生成方法,同时介绍了惯性系和非惯性系下的控制方程,讨论了非定常时间离散方法、动网格计算的几何守恒律等问题.在基于非结构/混合网格的非定常计算方法中,重点介绍了重叠非结构动网格技术、重构非结构动网格技术、变形非结构动网格技术以及变形/重构耦合动态混合网格技术等方法,以及相应的计算格式,包括非定常时间离散、几何守恒律计算方法、可压缩和不可压缩非定常流动的计算方法、各种加速收敛技术等.在介绍国内外进展的同时,介绍了作者在动态混合网格生成技术和相应的非定常方法方面的研究与应用工作.  相似文献   

3.
An estimate on the conservation error due to the non-conservative data interpolation scheme for overset grids is given in this paper. It is shown that the conservation error is a first-order term if second-order conservative schemes are employed for the Chimera grids and if discontinuities are located away from overlapped grid interfaces. Therefore in the limit of global grid refinement, valid numerical solutions should be obtained with a data interpolation scheme. In one demonstration case the conservation error in the original Chimera scheme was shown to affect flow even without discontinuities on coarse to medium grids. The conservative Chimera scheme was shown to give significantly better solutions than the original Chimera scheme on these grids with other factors being the same.  相似文献   

4.
A simple and efficient implementation of Adaptive Mesh Refinement (AMR) with distributed-memory approach is presented. Introducing a lookup table including grid connectivity information and simplified algorithms for AMR, the procedures for reconstructing adaptive grids are carried out in parallel, with local data to a large extent. A simple static load-balancing scheme is adopted, and the grids are not repartitioned and no data redistribution is performed. A numerical example on two different parallel computers shows that the proposed implementation of AMR is effective to reduce the computational time for unsteady flows with shock waves. Received 23 October 2000 / Accepted 30 March 2001 Published online 11 June 2002  相似文献   

5.
李海宁  王海峰  郭修宇  孙凯利 《应用力学学报》2020,(2):882-887,I0029,I0030
为研究重叠网格与结构网格在圆柱绕流数值模拟中的区别,以二维圆柱为例,利用有限元分析软件ANSYS 19.2中的DM与Mesh建立模型并划分重叠网格,利用ANSYS 19.2中的ICEM建立模型并划分结构网格。采用FLUENT 19.2中laminar模型模拟分析系统中的平均升力系数、平均阻力系数、斯特劳哈尔数St等流体动力特性。通过改变流体流速得到两种不同网格下各6组雷诺数Re,这6组雷诺数在60~160之间。结果表明:结构网格与重叠网格的St都随着Re的增加而增加,但相同雷诺数下重叠网格对应的St数值更大,St的增长速度更快;重叠网格与结构网格的平均升力系数与平均阻力系数随着Re的增加趋于稳定的速度都加快,但结构网格的平均升力系数与平均阻力系数趋于稳定的速度更快,且两种网格的平均升力系数与平均阻力系数趋于稳定速度的差距逐渐缩小,当Re=160时,两种网格的平均升力系数与平均阻力系数趋于稳定的速度几乎相同;当雷诺数在60~160之间时,采用重叠网格计算出来的斯特劳哈尔数比结构网格更加接近理论值;从升力功率谱密度分布曲线中可以看出,随着雷诺数的增加,两种网格下的频率逐渐变大,并且相同雷诺数下重叠网格的频率比结构网格大。  相似文献   

6.
When numerically calculating fluid flows around complex geometries using the high-order finite-difference method on structured grids, grid singularities are frequently observed, even if the grids are carefully generated. In multi-block computations with the generalised characteristic interface conditions (GCIC), decomposed subdomains (blocks) do not overlap but are connected by the inviscid characteristic relations. In the original theory of the GCIC, discontinuity of the metrics on the interface can be accurately treated; however, discontinuity of the grid lines on the interface is not allowed. This article proposes a theoretical extension to the GCIC by incorporating high-order interpolation methods; this extension is called GCIC with interpolation (GCIC + I). The basic concept and solution procedure of the multi-block computation with the GCIC + I are presented in detail, and two benchmark tests are conducted to validate the proposed theory.  相似文献   

7.
A flux reconstruction technique is presented to perform aeroacoustic computations using implicit high-order spatial schemes on multiblock structured grids with nonconforming interfaces. The use of such grids, with mesh spacing discontinuities across the block interfaces, eases local mesh refinements, simplifies the mesh generation process, and thus facilitates the computation of turbulent flows. In this work, the spatial discretization consists of sixth-order finite-volume implicit schemes with low-dispersion and low-dissipation properties. The flux reconstruction is based on the combination of noncentered schemes with local interpolations to define ghost cells and compute flux values at the grid interfaces. The flow variables in the ghost cells are calculated from the flow field in the grid cells using a meshless interpolation with radial basis functions. In this study, the flux reconstruction is applied to both plane and curved nonconforming interfaces. The performance of the method is first evaluated by performing two-dimensional simulations of the propagation of an acoustic pulse and of the convection of a vortex on Cartesian and wavy grids. No significant spurious noise is produced at the grid interfaces. The applicability of the flux reconstruction to a three-dimensional computation is then demonstrated by simulating a jet at a Mach number of 0.9 and a diameter-based Reynolds number of 4×105 on a Cartesian grid. The nonconforming grid interface located downstream of the jet potential core does not appreciably affect the flow development and the jet sound field, while reducing the number of mesh points by a factor of approximately two.  相似文献   

8.
发展了一种基于鲁棒Riemann求解器和运动重叠网格技术计算直升机悬停旋翼流场的方法。基于惯性坐标系,悬停旋翼流场是非定常流场,控制方程为可压缩Reynolds平均Navier-Stoke方程,其对流项采用Roe近似Reimann求解器离散,使用改进的五阶加权基本无振荡格式进行高阶重构,非定常时间推进采用含牛顿型LUSGS子迭代的全隐式双时间步方法。为实施旋转运动和便于捕捉尾迹,计算采用运动重叠网格技术。计算得到的桨叶表面压力分布及桨尖涡涡核位置都与实验结果吻合较好。数值结果表明:所发展方法对桨尖涡具有较高的分辨率,对激波具有较好的捕捉能力,该方法可进一步推广到前飞旋翼粘性绕流的计算。  相似文献   

9.
Three-dimensional algorithms for the numerical computation of flows caused by tides or meteorological forcing are developed for four of Arakawa's spatial grid types using a spectral method in the vertical dimension. Three of the grids, in which the velocity components are computed at the same grid points, offer potential advantages over the commonly used C-grid. The computed results from the four grids are compared for three test problems based on the linearized hydrodynamical equations. It is concluded that the B-grid provides a viable alternative to the C-grid, with significant advantages when a spectral method is used.  相似文献   

10.
A parallel adaptive Euler flow solution algorithm is developed for 3D applications on distributed memory computers. Significant contribution of this research is the development and implementation of a parallel grid adaptation scheme together with an explicit cell vertex-based finite volume 3D flow solver on unstructured tetrahedral grids. Parallel adaptation of grids is based on grid-regeneration philosophy by using an existing serial grid generation program. Then, a general partitioner repartitions the grid. An adaptive sensor value, which is a measure to refine or coarsen grids, is calculated considering the pressure gradients in all partitioned blocks of grids. The parallel performance of the present study was tested. Parallel computations were performed on Unix workstations and a Linux cluster using MPI communication library. The present results show that overall adaptation scheme developed in this study is applicable to any pair of a flow solver and grid generator with affordable cost. It is also proved that parallel adaptation is necessary for accurate and efficient flow solutions.  相似文献   

11.
The parallelization of an industrially important in‐house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier–Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block‐structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
传统的格子波尔兹曼方法(lattice-Boltzmann method, LBM)通常基于标准均匀网格, 这主要取决于速度的空 间离散格式.均匀网格结构的特点, 使LBM在处理具有复杂边界的问题时遇到较大的困难, 从而限制了它的应用.另外, 对于较为复杂的流动, 其流场存在流动变化剧烈和平缓的区域, 在流动变化剧烈的区域, 往往需要足够的网格点才能更好地捕捉到流场信息, 而均匀网格会使得网格数量过多, 这会增加计算量, 但网格数量过少又无法获得必要的流场信息, 使LBM的计算效率降低.为了解决上述问题, 用不同的网格结构, 以顶盖驱动的腔体内流、柱体绕流和翼型绕流为例, 探讨了提高LBM算法的计算效率和适用性问题.  相似文献   

13.
We present methods for computing either the level set function or volume fraction field from the other at second‐order accuracy. Both algorithms are optimal in that O(N) computations are needed for N total grid points and both algorithms are easily parallelized. This work includes a novel interface reconstruction algorithm in three dimensions that requires a smaller local block of volume fractions than existing algorithms. A compact local solver leads to better algorithm portability and efficiency: for example, fewer restrictions must be imposed on an adaptive mesh, and fewer grid cells must be communicated between processors in a parallel implementation. We also present a fast sweeping method for computing a unique approximation of the signed distance function to a piecewise linear interface. All of the numerical examples confirm second‐order accuracy on both uniform and tree‐based adaptive grids. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A grid deformation technique is presented here based on a transfinite interpolation algorithm applied to the grid displacements. The method, tested using a two‐dimensional flow solver that uses an implicit dual‐time method for the solution of the unsteady Euler equations on deforming grids, is applicable to problems with time varying geometries arising from aeroelasticity and free surface marine problems. The present work is placed into a multi‐block framework and fits into the development of a generally applicable parallel multi‐block flow solver. The effect of grid deformation is examined and comparison with rigidly rotated grids is made for a series of pitching aerofoil test cases selected from the AGARD aeroelastic configurations for the NACA0012 aerofoil. The effect of using a geometric conservation law is also examined. Finally, a demonstration test case for the Williams aerofoil with an oscillating flap is presented, showing the capability of the grid deformation technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.  相似文献   

16.
In this paper we present a scheme for the numerical generation of boundary-fitted grids that adapt to both water depth and depth gradient. The scheme can be used in arbitrary two-dimensional regions and is based on the application of the well-known control function approach to generate adaptive grids. The method includes the evaluation of water depths at the grid points from a known distribution of depth points and their associated depths plus a procedure for the numerical evaluation of depth gradients. It is demonstrated that the smoothness of the grid can be enhanced by introducing a suitable filtering technique.  相似文献   

17.
‘Stream function as a coordinate approach’ (SFC) combined with compact high-order finite difference schemes has been developed and applied to aeroacoustics and unsteady aerodynamics problems. Straightforward implementation of SFC creates coarse grids at the vicinity of stagnation points that smears high-order numerical computations. Grid clustering is employed to resolve coarse grid near stagnations points. The agreement between numerical results and particle image velocimetry (PIV) measurements for flapping airfoil shows the robustness of the current approach for performing high-order computations.  相似文献   

18.
We present a new coupled level set and volume-of-fluid (CLSVOF) method for free surface flow simulations on an overset grid system. The coupled method takes advantages of the strengths of the level set (LS) method and the volume-of-fluid (VOF) method, and is superior to either single method. The novelty of the present method lies in that we develop the methodology for an overset grid system of embedding, overlapping and moving structured grids. The new methodology accurately captures interface and greatly preserves mass on an overset grid system by demonstrating the 3D sphere advection test. The method is coupled to a well validated Reynolds-Averaged Navier–Stokes incompressible flow solver. The method is validated with the dam-breaking flow interacting with a 3D obstacle (square structure/circular cylinder) by comparing the numerical results with available experimental and numerical studies. The water impact of a sphere case is further performed to demonstrate the capabilities of the new method on a complicated moving overset grid system.  相似文献   

19.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
We present an overset grid method for solution of the integro‐differential vorticity–velocity formulation of the Navier–Stokes equations for two‐dimensional, incompressible flow. The method uses a body‐fitted inner grid, on which vorticity is evolved semi‐implicitly, and a Cartesian outer grid with explicit vorticity evolution. The Biot–Savart integral is solved using an adaptive, optimized multipole acceleration method. The Biot–Savart integration is performed over all inner grid cells, over all ‘active cells’ of the outer grid that lie entirely outside of the inner grid, and over sub‐elements of a set of ‘overhanging’ cells of the outer grid that overlap part of the inner grid. A novel method is developed using a level‐set distance function to rapidly and easily partition the overhanging grid cells, which is essential for the Biot–Savart integration in order to avoid double‐counting vorticity in the overhanging region. A similar decomposition into outer, inner and overhanging cells is used in solving for pressure using a boundary‐element formulation, which requires evaluation of an integral over the vorticity field using a method similar to that used for the Biot–Savart integral. The new overset grid method is applied to flow past stationary and moving bodies in two dimensions and found to agree well with prior experimental and numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号