首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
The present work deals with the propagation of interfacial surface waves in a composite consisting of homogeneous, transversely isotropic, piezoelectric halfspace underlying a thin layer of non-piezoelectric semiconductor material. The mathematical model of the problem is depicted by partial differential equations of motion for the structure and boundary conditions to be satisfied at the interface and free surface of the composite. After obtaining formal wave solution of the model the secular equation that governs the propagation of surface waves in the considered composite structure has been derived in compact form. The numerical solution of secular equation is being carried out for the composites Si–CdSe, Ge–CdSe and Ge–PZT by employing functional iteration method along with irreducible Cardano method using MATLAB programming. The computer simulated results in respect of dispersion curves, attenuation coefficient and specific loss factor of energy dissipation are presented graphically for Si–CdSe composite to illustrate the analytical developments. We have extended our analysis to Ge–CdSe and Ge–PZT composites also. However, to avoid clustering of profiles and also to have clear understanding of the variations, the computer simulated values of phase velocity and attenuation coefficient are presented in tabular form for all three considered composite structures. This work may be useful for designing and construction of surface acoustic wave (SAW) devices and electronics industry.  相似文献   

2.
In this paper, we consider the propagation of Rayleigh surface waves in a functionally graded isotropic thermoelastic half-space, in which all thermoelastic characteristic parameters exponentially change along the depth direction. The propagation condition is established in the form of a bicubic equation whose coefficients are complex numbers while the analytical solutions (eigensolutions) of the thermoelastodynamic system are explicitly obtained in terms of the characteristic solutions. The concerned solution of the Rayleigh surface wave problem is subsequently expressed as a linear combination of the three eigensolutions while the secular equation is established in an implicit form. The explicit secular equation is written when an isotropic and homogeneous thermoelastic half-space is considered and some numerical simulations are given for a specific material.  相似文献   

3.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

4.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

5.
In this paper we analyze the behavior of plane harmonic waves and Rayleigh waves in a linear thermoelastic material with voids. We take into account the damped effects of the thermal field upon the propagation waves. Consequently, the propagation condition is established in the form of an algebraic equation of 9th degree whose coefficients are complex numbers while the eigensolutions of the thermoelastodynamic with voids system are explicitly obtained in terms of the characteristic solutions. We show that the transverse waves are undamped in time and they are not influenced by the thermal and porous effects while the longitudinal waves are all damped in time and they are coupled with the thermal and porous effects. The related solution of the Rayleigh surface wave problem is expressed as a linear combination of the eigensolutions in concern. The secular equation is established in an implicit form and afterwards an explicit form is written for an isotropic and homogeneous thermoelastic with voids half-space. Furthermore, we use the numerical methods and computations to solve the secular equation for a specific material.  相似文献   

6.
The constitutive relations and field equations for anisotropic generalized thermoelastic diffusion are derived and deduced for a particular type of anisotropy, i.e. transverse isotropy. Green and Lindsay (GL) theory, in which, thermodiffusion and thermodiffusion–mechanical relaxations are governed by four different time constants, is selected for study. The propagation of plane harmonic thermoelastic diffusive waves in a homogeneous, transversely isotropic, elastic plate of finite width is studied, in the context of generalized theory of thermoelastic diffusion. According to the characteristic equation, three quasi-longitudinal waves namely, quasi-elastodiffusive (QED-mode), quasi-massdiffusive (QMD-mode) and quasi-thermodiffusive (QTD-mode) can propagate in addition to quasi-transverse waves (QSV-mode) and the purely quasi-transverse motion (QSH-mode), which is not affected by thermal and diffusion vibrations, gets decoupled from the rest of the motion of wave propagation. The secular equations corresponding to the symmetric and skew symmetric modes of the plate are derived. The amplitudes of displacements, temperature change and concentration for symmetric and skew symmetric modes of vibration of plate are computed numerically. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient and amplitudes of wave propagation are presented graphically in order to illustrate and compare the analytically results. Some special cases of frequency equation are also deduced from the existing results.  相似文献   

7.
This paper concentrates on the study of the propagation of harmonic plane waves in a homogeneous anisotropic thermoelastic diffusive medium in the context of different theories of thermoelastic diffusion. It is found that five types of waves propagate in an anisotropic thermoelastic diffusive medium, namely a quasi-elastodiffusive (QED-mode), two quasi-transverse (QSH-mode and QSV-mode), a quasi-mass diffusive (QMD-mode) and a quasi-thermo diffusive (QTD-mode) wave. The governing equations for homogeneous transversely isotropic diffusive medium in different theories of thermoelastic diffusion are taken as a special case. It is noticed that when plane waves propagate in one of the planes of transversely isotropic thermoelastic diffusive solid, purely quasitransverse wave mode(QSH) decouples from rest of the motion and is not affected by the thermal and diffusion vibrations. On the other hand, when plane waves propagate along the axis of solid, two quasi-transverse wave modes (QSH and QSV) decouple from the rest of the motion and are not affected by the thermal and diffusion vibrations. From the obtained results, the different characteristics of waves like phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically and presented graphically for a single crystal of magnesium. The effects of diffusion and relaxation times on phase velocity, attenuation coefficient, specific loss and penetration depth has been studied. Some particular cases are also discussed.  相似文献   

8.
The propagation of circularly crested thermoelastic diffusive waves in an infinite homogeneous transversely isotropic plate subjected to stress free, isothermal/insulated and chemical potential conditions is investigated in the framework of different thermo- elastic diffusion theories. The dispersion equations of thermoelastic diffusive Lamb type waves are derived. Some special cases of the dispersion equations are also deduced.  相似文献   

9.
The propagation of waves in microstretch thermoelastic homogeneous isotropic plate subjected to stress free thermally insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT) and Lord and Shulman (L–S) theories of thermoelasticity. The secular equations for both symmetric and skew-symmetric wave mode propagation have been obtained. At short wavelength limits, the secular equations for symmetric and skew-symmetric modes reduce to Rayleigh surface wave frequency equation. The amplitudes of dilatation, microrotation, microstretch and temperature distribution for the symmetric and skew symmetric wave modes are computed analytically and presented graphically for different theories of thermoelasticity. The theoretical and numerical computations are found to be in close agreement.  相似文献   

10.
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit, the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.  相似文献   

11.
The present paper deals with the study of rotation effect on the characteristics of Rayleigh waves propagating in a homogeneous, transversely isotropic piezothermoelastic half space in the framework of linear theory including Coriolis and Centrifugal forces. The medium is subjected to stress free, thermally insulated, electrically shorted/charge free boundary conditions and is rotating about an axis perpendicular to its plane. Characteristics of surface waves propagating in thermoelastic piezoelectric solids and their dependence upon various geometric and physical parameters are derived. After deriving secular equations in closed form and isolated mathematical conditions, the effect of rotation on dispersion curves and attenuation profiles is studied. The specific loss factor and relative frequency shift are also obtained in case of open and closed circuit electric surface conditions. Finally, in order to illustrate and verify the analytical results, numerical solution of various secular equations and other relevant relations are derived for cadmium selenide (6 mm) class material. The analysis shows that the rotation sensitivity at long wavelengths (in the vicinity of the surface) is substantially greater than those at short wavelengths (deep into the half space). The study is very helpful in the development of rotation sensors and other piezoelectric devices.  相似文献   

12.
The present investigation is aimed at studying the effect of rotation on propagation of Rayleigh—Lamb waves in a homogeneous isotropic thermoelastic diffusive plate of finite width in the framework of different theories of thermoelasticity, including the Coriolis and centrifugal forces. The medium is subjected to stress-free, thermally insulated, isothermal, and chemical potential boundary conditions and is rotating about an axis perpendicular to its plane. Secular equations corresponding to the symmetric and skew-symmetric modes of the plate are derived. Phase velocities and attenuation coefficients of various possible modes of wave propagation are computed from the secular equations. Amplitudes of displacements, temperature, and concentration for symmetric and skew-symmetric modes of plate vibrations are computed numerically. The computed results are presented graphically.  相似文献   

13.
Small amplitude inhomogeneous plane waves are studied as they propagate on the free surface of a predeformed semi-infinite body made of Bell constrained material. The predeformation corresponds to a finite static pure homogeneous strain. The surface wave propagates in a principal direction of strain and is attenuated in another principal direction, orthogonal to the free surface. For these waves, the secular equation giving the speed of propagation is established by the method of first integrals. This equation is not the same as the secular equation for incompressible half-spaces, even though the Bell constraint and the incompressibility constraint coincide in the isotropic infinitesimal limit.  相似文献   

14.
The present paper studies the propagation of plane time harmonic waves in an infinite space filled by a thermoelastic material with microtemperatures. It is found that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic waves uncoupled, undamped in time and traveling independently with the speed that is unaffected by the thermal effects; (b) two transverse thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c) three dilatational waves that are coupled due to the presence of thermal properties of the material. The set of dilatational waves consists of a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two transverse elastic waves are not subjected to the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit expressions for all these seven waves are presented. The Rayleigh surface wave propagation problem is addressed and the secular equation is obtained in an explicit form. Numerical computations are performed for a specific model, and the results obtained are depicted graphically.  相似文献   

15.
In this paper we consider the propagation of Rayleigh surface waves in an exponentially graded half-space made of an isotropic Kelvin-Voigt viscoelastic material. Here we take into account the effect of the viscoelastic dissipation energy upon the corresponding wave solutions. As a consequence we introduce the damped in time wave solutions and then we treat the Rayleigh surface wave problem in terms of such solutions. The explicit form of the secular equation is obtained in terms of the wave speed and the viscoelastic inhomogeneous profile. Furthermore, we use numerical methods and computations to solve the secular equation for some special homogeneous materials. The results sustain the idea, existent in literature on the argument, that there is possible to have more than one surface wave for the Rayleigh wave problem.  相似文献   

16.
The propagation of Lamb waves in a homogeneous, transversely isotropic (6 mm class), piezothermoelastic plate rotating with uniform angular velocity about normal to its boundary has been investigated. The generalized (non-classical) theories of thermoelasticity in contrast to Sharma and Pal [Sharma, J.N., Pal, M., 2004. Lamb wave propagation in transversely isotropic piezothermoelastic plate. J. Sound Vib. 270, 587–610] have been used to investigate the problem. The surfaces of the plate are subjected to stress free, thermally insulated/isothermal and electrically shorted boundary conditions. Secular equations for wave propagation modes in the plate are derived from a coupled system of governing partial differential equations of linear piezothermoelasticity. After obtaining the complex characteristic roots with the help of Descartes' algorithm, the transcendental secular equations have been solved by functional iteration numerical technique to compute phase velocity and attenuation coefficient. Finally, in order to illustrate the analytical development, numerical solution of secular equations is carried out for PZT-5A piezo-thermoelastic material. The corresponding simulated results of various physical quantities such as phase velocity, attenuation coefficients, specific loss factor of energy dissipation, thermo-mechanical coupling factor and relative frequency shifts have been presented graphically for both rotating and non-rotating plates for comparison purpose. There is a scope for extension of the present work to other classes of piezo/pyroelectric crystals. The study will be useful in design and construction of gyroscope, rotation sensors, temperature sensors and other pyro/piezoelectric surface acoustic wave (SAW) devices.  相似文献   

17.
近年来, 超声导波因其衰减小, 传播距离远和信号覆盖范围广, 成为无损检测领域快速发展的方向之一. 然而, 基于超声导波的高温在线检测和激光超声技术却发展缓慢, 其关键在于热弹耦合波动方程求解难度大、传播与衰减特性研究困难. 作为一种有效的求解方法, 勒让德正交多项式方法已广泛应用于导波传播问题, 但该方法在求解热弹导波传播时存在两个不足, 限制其进一步的发展和应用. 这两个缺陷是: (1)求解过程中大量积分的存在, 致使计算效率低下; (2)仅能处理等热边界条件的热弹导波传播. 针对两项不足之处, 提出一种改进的勒让德正交多项式方法, 以求解分数阶热弹板中的导波传播. 推导求解方法中积分的解析表达式, 以提高计算效率; 引入温度梯度展开式, 发展适合勒让德多项式级数的绝热边界条件处理方法. 与已有文献结果对比表明改进方法的正确性; 与已有方法的计算时间对比说明改进方法的高效性. 最后将改进的方法用于求解分数阶热弹板中的导波传播, 研究分数阶次对频散、衰减曲线和应力、位移、温度分布等的影响.   相似文献   

18.
The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.  相似文献   

19.
针对无限大n-型压电半导体板,论文理论研究了其在初应力作用下水平剪切波的传播特性。基于压电半导体三维宏观理论和边界条件得到色散关系,结合数值算例,系统分析了边界条件、初始载流子浓度、板的厚度和初应力大小对SH波传播特性的影响。此外,讨论了初应力下两种不同材料中的SH波传播。研究显示:较小的初应力对相速度影响很小可忽略,当初应力达到一定值时波速急剧下降;类似地,初应力足够大时衰减才会逐渐加强。计算结果对压电半导体器件设计具有一定的理论指导意义。  相似文献   

20.
The present paper studies the propagation of shear waves (SH-type waves) in an homogeneous isotropic medium sandwiched between two semi infinite media. The upper half-space is considered as orthotropic medium under initial stress and lower half-space considered as heterogeneous medium. We have obtained the dispersion equation of phase velocity for SH-type waves. The propagation of SH-type waves are influenced by inhomogeneity parameters and initial stress parameter. The velocity of SH-type wave has been computed for different cases. We have also obtained the dispersion equation of phase velocity in homogeneous media in the absence of initial stress. The velocities of SH-type waves are calculated numerically as a function of kH (non-dimensional wave number) and presented in a number of graphs. To study the effect of inhomogeneity parameters and initial stress parameter we have plotted the velocity of SH-type wave in several figure. We have observed that the velocity of wave increases with the increase inhomogeneity parameters. We found that in both homogeneous and inhomogeneous media the velocity of SH-type wave increases with the increase of initial stress parameter. The results may be useful for the study of seismic waves propagation during any earthquake and artificial explosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号