首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A two‐phase flow model, which solves the flow in the air and water simultaneously, is presented for modelling breaking waves in deep and shallow water, including wave pre‐breaking, overturning and post‐breaking processes. The model is based on the Reynolds‐averaged Navier–Stokes equations with the k ?ε turbulence model. The governing equations are solved by the finite volume method in a Cartesian staggered grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm is utilised for the pressure‐velocity coupling and the air‐water interface is modelled by the interface capturing method via a high resolution volume of fluid scheme. The numerical model is validated by simulating overturning waves on a sloping beach and over a reef, and deep‐water breaking waves in a periodic domain, in which good agreement between numerical results and available experimental measurements for the water surface profiles during wave overturning is obtained. The overturning jet, air entrainment and splash‐up during wave breaking have been captured by the two‐phase flow model, which demonstrates the capability of the model to simulate free surface flow and wave breaking problems.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A model for multidimensional compressible two‐phase flow with pressure and velocity relaxations based on the theory of thermodynamically compatible system is extended to study liquid–gas flows with cavitation. The model assumes for each phase its own pressure and velocity, while a common temperature is considered. The governing equations form a hyperbolic system in conservative form and are derived through the theory of a thermodynamically compatible system. The phase pressure‐equalizing process and the interfacial friction are taken into account in the balance laws for the volume fractions of one phase and for the relative velocity by adding two relaxation source terms, while the phase transition is introduced into the model considering in the balance equation for the mass of one phase the relaxation of the Gibbs free energies of the two phases. A modification of the central finite‐volume Kurganov–Noelle–Petrova method is adopted in this work to solve the homogeneous hyperbolic part, while the relaxation source terms are treated implicitly. In order to investigate the effect of the mass transfer in the solution, a 1D cavitation tube problem is presented. In addition, two 2D numerical simulations regarding cavitation problem are also studied: a cavitating Richtmyer–Meshkov instability and a laser‐induced cavitation problem. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the extension of a high‐resolution conservative scheme to the one‐dimensional one‐pressure six‐equation two‐fluid flow model. Only mixtures of water and air have been considered in this study, both fluids have been characterized using simple equations of state, namely stiffened gas for the liquid phase and perfect gas for the gas phase. The resulting scheme is explicit and first‐order accurate in space and time. A second‐order version of the scheme has also been derived using the MUSCL strategy and slope limiters. Some numerical results show the good capabilities of this type of schemes in the solution of discontinuities in two‐fluid flow problems, all of them are based on water/air numerical benchmarks widely used in the two‐phase flow literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Numerical methods for the Baer–Nunziato model of compressible two‐phase flow have attracted much attention in recent years. In this paper, a two‐phase Bhatnagar–Gross–Krook (BGK) model is constructed in which the non‐conservative terms in the Baer–Nunziato model are considered as the external forces and the collisions both with particles of their phases and other phases are taken into consideration. On the basis of this BGK model, the so‐called modified Baer–Nunziato model is derived and a gas‐kinetic scheme for this modified model is presented. The distribution functions are constructed at the cell interface based on the integral solutions of the BGK equations for both phases. Then, numerical fluxes can be obtained by taking moments of the distribution functions, and non‐conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the iterative processes in the exact Riemann solvers are eliminated but also the collisions with the particles of other phases are taken into account. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A general and robust subgrid closure model for two‐material cells is proposed. The conservative quantities of the entire cell are apportioned between two materials, and then, pressure and velocity are fully or partially equilibrated by modeling subgrid wave interactions. An unconditionally stable and entropy‐satisfying solution of the processes has been successfully found. The solution is valid for arbitrary level of relaxation. The model is numerically designed with care for general materials and is computationally efficient without recourse to subgrid iterations or subcycling in time. The model is implemented and tested in the Lagrange‐remap framework. Two interesting results are observed in 1D tests. First, on the basis of the closure model without any pressure and velocity relaxation, a material interface can be resolved without creating numerical oscillations and/or large nonphysical jumps in the problem of the modified Sod shock tube. Second, the overheating problem seen near the wall surface can be solved by the present entropy‐satisfying closure model. The generality, robustness, and efficiency of the model make it useful in principle in algorithms, such as ALE methods, volume of fluid methods, and even some mixture models, for compressible two‐phase flow computations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a new model and a solution method for two‐phase two‐fluid compressible flows. The model involves six equations obtained from conservation principles applied to a one‐dimensional flow of gas and liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features of the model include the existence of real eigenvalues and a complete set of independent eigenvectors. Its numerical solution poses several difficulties. The model possesses a large number of acoustic and convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use relatively modern shock‐capturing methods of a centred‐type such as the total variation diminishing (TVD) slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy. Several numerical test problems are displayed in order to highlight the efficiency of the study we propose. The scheme provides reliable results, is able to compute strong shock waves and deals with complex equations of state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Consideration is given in this paper to the numerical solution of the transient two‐phase flow in rigid pipelines. The governing equations for such flows are two coupled, non‐linear, hyperbolic, partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principle dependent variables. The fluid is a homogeneous gas–liquid mixture for which the density is defined by an expression averaging the two‐component densities where a polytropic process of the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas–fluid mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The problem has been solved by the method of non‐linear characteristics and the finite difference conservative scheme. To verify their validity, the computed results of the two numerical techniques are compared for different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are neglected. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In the paper, a cross‐flow fan in refrigerant operating condition is systematically simulated using user‐defined functions. Three‐dimensional simulations are acquired with Navier–Stokes equations coupled with k–ε turbulence model, and internal flow characteristics of an indoor split‐type air conditioner are obtained, which is mainly composed of cross‐flow fan and heat exchanger. It has systematically been simulated in the isothermal flow condition that the performance of cross‐flow fan may be reduced easily with dry or humid air, and in the refrigerant operating condition in which user‐defined functions are applied to the humid air, considered as a mixture of dry air and vapor. A density‐modulated function is adopted to deal with the condensation of the vapor at the heat‐transfer region approximately. The results show flow mechanism of the two gas‐phase flow, including phase‐vary process. The distribution of the parameters is not uniform at the inlet of the machine, the intensity and position of pressure and velocity vary along the axial direction of the fan, the distribution of vapor volume fraction and turbulent intensity in heat‐transfer region is obtained, and the external characteristic data of the indoor machine are obtained and analyzed. Compared with the experimental data, the calculated characteristic curves and designed parameters are on target. © British Crown Copyright 2010/MOD. Reproduced with permission. Published by John Wiley & Sons, Ltd.  相似文献   

13.
Details are given of the development of a two‐dimensional vertical numerical model for simulating unsteady free‐surface flows, using a non‐hydrostatic pressure distribution. In this model, the Reynolds equations and the kinematic free‐surface boundary condition are solved simultaneously, so that the water surface elevation can be integrated into the solution and solved for, together with the velocity and pressure fields. An efficient numerical algorithm has been developed, deploying implicit parameters similar to those used in the Crank–Nicholson method, and generating a block tri‐diagonal algebraic system of equations. The model has been applied to simulate a range of unsteady flow problems involving relatively strong vertical accelerations. The results show that the numerical algorithm described is able to produce accurate predictions and is also easy to apply. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a depth‐integrated nonhydrostatic flow model is developed using the method of weighted residuals. Using a unit weighting function, depth‐integrated Reynolds‐averaged Navier‐Stokes equations are obtained. Prescribing polynomial variations for the field variables in the vertical direction, a set of perturbation parameters remains undetermined. The model is closed generating a set of weighted‐averaged equations using a suitable weighting function. The resulting depth‐integrated nonhydrostatic model is solved with a semi‐implicit finite‐volume finite‐difference scheme. The explicit part of the model is a Godunov‐type finite‐volume scheme that uses the Harten‐Lax‐van Leer‐contact wave approximate Riemann solver to determine the nonhydrostatic depth‐averaged velocity field. The implicit part of the model is solved using a Newton‐Raphson algorithm to incorporate the effects of the pressure field in the solution. The model is applied with good results to a set of problems of coastal and river engineering, including steady flow over fixed bedforms, solitary wave propagation, solitary wave run‐up, linear frequency dispersion, propagation of sinusoidal waves over a submerged bar, and dam‐break flood waves.  相似文献   

16.
17.
A new numerical method is presented for the solution of the Navier–Stokes and continuity equations governing the internal incompressible flows. The method denoted as the CVP method consists in the numerical solution of these equations in conjunction with three additional variational equations for the continuity, the vorticity and the pressure field, using a non‐staggered grid. The method is used for the study of the characteristics of the laminar fully developed flows in curved square ducts. Numerical results are presented for the effects of the flow parameters like the curvature, the Dean number and the stream pressure gradient on the velocity distributions, the friction factor and the appearance of a pair of vortices in addition to those of the familiar secondary flow. The accuracy of the method is discussed and the results are compared with those obtained by us, using a variation of the velocity–pressure linked equation methods denoted as the PLEM method and the results obtained by other methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid particle‐mesh method was developed for efficient and accurate simulations of two‐phase flows. In this method, the main component of the flow is solved using the constrained interpolated profile/multi‐moment finite volumemethod; the two‐phase interface is rendered using the finite volume particle (FVP) method. The effect of surface tension is evaluated using the continuum surface force model. Numerical particles in the FVP method are distributed only on the surface of the liquid in simulating the interface between liquid and gas; these particles are used to determine the density of each mesh grid. An artificial term was also introduced to mitigate particle clustering in the direction of maximum compression and sparse discretization errors in the stretched direction. This enables accurate interface tracking without diminishing numerical efficiency. Two benchmark simulations are used to demonstrate the validity of the method developed and its numerical stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A new approach is proposed for constructing a fully explicit third‐order mass‐conservative semi‐Lagrangian scheme for simulating the shallow‐water equations on an equiangular cubed‐sphere grid. State variables are staggered with velocity components stored pointwise at nodal points and mass variables stored as element averages. In order to advance the state variables in time, we first apply an explicit multi‐step time‐stepping scheme to update the velocity components and then use a semi‐Lagrangian advection scheme to update the height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme is shown to be competitive with many existing numerical methods on a suite of standard test cases and demonstrates slightly improved performance over other high‐order finite‐volume models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Results of a numerical analysis of the dynamic behavior of a compressed magma melt in a slot channel with gradual opening of the diaphragm and results of simulations of its time evolution are reported. The Iordanskii–Kogarko–van Vijngaarden mathematical model of a twophase medium and a model that describes phase changes in the gas-saturated plasma behind the front of the decompression wave being formed are used. Results of numerical simulations of the flow with allowance for specific features of the pressure dynamics in the decompression wave, mass velocity components, volume fraction of the gas phase, and its viscosity are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号