首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical method based on the streamfunction–vorticity formulation is applied to simulate the two‐dimensional, transient, viscous flow with a free surface. This method successfully uses the locally refined grid in an inviscid–viscous model to explore the processes of vortex formation due to a solitary wave passing over a submerged bluff body. The two particular bodies considered here are a blunt rectangular block and a semicircular cylinder. Flow visualization to track dyelines is carried out in the laboratory in order to confirm the validity of the numerical results. Numerical results examined by different grid configurations ensure the locally refined grid to be useful in practical application. Flow phenomena, including the vortex motion and wave patterns during non‐linear wave–structure interaction, are also discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
A method is outlined for solving two-dimensional transonic viscous flow problems, in which the velocity vector is split into the gradient of a potential and a rotational component. The approach takes advantage of the fact that for high-Reynolds-number flows the viscous terms of the Navier-Stokes equations are important only in a thin shear layer and therefore solution of the full equations may not be needed everywhere. Most of the flow can be considered inviscid and, neglecting the entropy and vorticity effects, a potential model is a good approximation in the flow core. The rotational part of the flow can then be calculated by solution of the potential, streamfunction and vorticity transport equations. Implementation of the no-slip and no-penetration boundary conditions at the walls provides a simple mechanism for the interaction between the viscous and inviscid solutions and no extra coupling procedures are needed. Results are presented for turbulent transonic internal choked flows.  相似文献   

4.
Do we observe Gerstner waves in wave tank experiments?   总被引:1,自引:0,他引:1  
We investigate theoretically the effects of viscosity and surface films on small-amplitude Gerstner waves in deep water. The analysis is performed by using a Lagrangian formulation of fluid motion. For inviscid fluids with a free surface Gerstner waves of arbitrary amplitude are exact solutions of the nonlinear Lagrangian equations. These waves have a trochoidal surface shape. They possess vorticity, but have no mean wave momentum, i.e. induce no net drift in the fluid. By expanding the wave motion after the wave steepness as a small parameter, we demonstrate how Gerstner waves to second order in wave steepness change due to viscosity, leading to a mean drift near the surface and a backward drift beneath the surface layer, so that they conserve total (zero) mean wave momentum. In addition, if the surface is covered by a freely floating inextensible film, the mean drift at the surface (the film speed) increases dramatically. A comparison with experimental data for the drift of thin plastic sheets in wave tanks is made, showing that the presence of viscosity-modified Gerstner waves cannot be ruled out on the basis of these observations.  相似文献   

5.
This paper presents a two‐dimensional Lagrangian–Eulerian finite element approach of non‐steady state turbulent fluid flows with free surfaces. The proposed model is based on a velocity–pressure finite element Navier–Stokes solver, including an augmented Lagrangian technique and an iterative resolution of Uzawa type. Turbulent effects are taken into account with the k–ε two‐equation statistical model. Mesh updating is carried out through an arbitrary Lagrangian–Eulerian (ALE) method in order to describe properly the free surface evolution. Three comparisons between experimental and numerical results illustrate the efficiency of the method. The first one is turbulent flow in an academic geometry, the second one is a mould filling in effective casting conditions and the third one is a precise confrontation to a water model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
7.
A parallel, finite element method is presented for the computation of three‐dimensional, free‐surface flows where surface tension effects are significant. The method employs an unstructured tetrahedral mesh, a front‐tracking arbitrary Lagrangian–Eulerian formulation, and fully implicit time integration. Interior mesh motion is accomplished via pseudo‐solid mesh deformation. Surface tension effects are incorporated directly into the momentum equation boundary conditions using surface identities that circumvent the need to compute second derivatives of the surface shape, resulting in a robust representation of capillary phenomena. Sample results are shown for the viscous sintering of glassy ceramic particles. The most serious performance issue is error arising from mesh distortion when boundary motion is significant. This effect can be severe enough to stop the calculations; some simple strategies for improving performance are tested. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A fully nonlinear irregular wave tank has been developed using a three‐dimensional higher‐order boundary element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an integral equation method. Based on image theory, a new Green function is applied in the whole fluid domain so that only the incident surface and free surface are discretized for the integral equation. The fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and boundary values on it by a semi‐mixed Eulerian–Lagrangian time marching scheme. The incident waves are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by using a spatially varying artificial damping on the free surface before they reach the downstream boundary. Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results are compared with the theoretical input waves. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The Lagrangian approach is usually used for the simulation of flow with strong shock waves. Moreover, this approach is particularly well suited to treatment of material interfaces in the case of multimaterial flows.Unfortunately, this formulation leads to very large deformations in the mesh. The arbitrary Lagrangian‐Eulerian method overcomes this drawback by using a mesh regularization that is based on an analysis of cell geometry. The regularization step may be considered as a method used to correct the nonconvex and potentially tangled cells that constitute the mesh. In this paper, we present a new approach to mesh regularization. Instead of using a purely geometric criterion, we propose that the mesh evolution is computed on the basis of the flow vorticity. This approach is called the large Eddy limitation method, and it is aimed here to be used in finite volume direct arbitrary Lagrangian‐Eulerian methods. The large Eddy limitation method is general, which means that it is not restricted to applications in the finite volume framework dedicated to fluid flow simulation; for instance, it could also be naturally applied to the finite element framework.  相似文献   

11.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The governing equations for depth-averaged turbulent flow are presented in both the primitive variable and streamfunction–vorticity forms. Finite element formulations are presented, with special emphasis on the handling of bottom stress terms and spatially varying eddy viscosity. The primitive variable formulation is found to be preferable because of its flexibility in handling spatial variation in viscosity, variability in water surface elevations, and inflow and outflow boundaries. The substantial reduction in computational effort afforded by the streamfunction–vorticity formulation is found not to be sufficient to recommend its use for general depth-averaged flows. For those flows in which the surface can be approximated as a fixed level surface, the streamfunction–vorticity form can produce results equivalent to the primitive variable form as long as turbulent viscosity can be estimated as a constant.  相似文献   

13.
Some flows such as the wakes of rotating devices often display helical symmetry. We present an original DNS code for the dynamics of such helically symmetric systems. We show that, by enforcing helical symmetry, the three-dimensional Navier–Stokes equations can be reduced to a two-dimensional unsteady problem. The numerical method is a generalisation of the vorticity/streamfunction formulation in a circular domain, with finite differences in the radial direction and spectral decomposition along the azimuth. When compared to a standard three-dimensional code, this allows us to reach larger Reynolds numbers and to compute quasi-steady patterns. We illustrate the importance of helical pitch by some physical cases: the dynamics of several helical vortices and a quasi-steady vortex flow. We also study the linear dynamics and nonlinear saturation in the Batchelor vortex basic flow, a paradigmatic example of trailing vortex instability. We retrieve the behaviour of inviscid modes and present new results concerning the saturation of viscous centre modes.  相似文献   

14.
The objective of this work is to develop a finite element model for studying fluid–structure interaction. The geometrically non‐linear structural behaviour is considered and based on large rotations and large displacements. An arbitrary Lagrangian–Eulerian (ALE) formulation is used to represent the compressible inviscid flow with moving boundaries. The structural response is obtained using Newmark‐type time integration and fluid response employs the Lax–Wendroff scheme. A number of numerical examples are presented to validate the structural model, moving mesh implantation of the ALE model and complete fluid–structure interaction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A heterogeneous domain decomposition approach is followed to simulate the unsteady wavy flow generated by a body moving beneath a free surface. Attention being focused on complex free surface configurations, including wave‐breaking phenomena, a two‐fluid viscous flow model is used in the free surface region to capture the air–water interface (via a level‐set technique), while a potential flow approximation is adopted to describe the flow far from the interface. Two coupling strategies are investigated, differing in the transmission conditions. Both the adopted approaches make use of the inviscid velocity field as boundary condition in the Navier–Stokes solution. For validation purposes, two different two‐dimensional non‐breaking flows are simulated. Domain decomposition results are compared with both fully viscous and fully inviscid results, obtained by solving the corresponding equations in the whole fluid domain, and with available experimental data. Finally, the unsteady evolution of a steep breaking wave is followed and some of the physical phenomena, experimentally observed, are reproduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The paper describes the implementation of moving‐mesh and free‐surface capabilities within a 3‐d finite‐volume Reynolds‐averaged‐Navier–Stokes solver, using surface‐conforming multi‐block structured meshes. The free‐surface kinematic condition can be applied in two ways: enforcing zero net mass flux or solving the kinematic equation by a finite‐difference method. The free surface is best defined by intermediate control points rather than the mesh vertices. Application of the dynamic boundary condition to the piezometric pressure at these points provides a hydrostatic restoring force which helps to eliminate any unnatural free‐surface undulations. The implementation of time‐marching methods on moving grids are described in some detail and it is shown that a second‐order scheme must be applied in both scalar‐transport and free‐surface equations if flows driven by free‐surface height variations are to be computed without significant wave attenuation using a modest number of time steps. Computations of five flows of theoretical and practical interest—forced motion in a pump, linear waves in a tank, quasi‐1d flow over a ramp, solitary wave interaction with a submerged obstacle and 3‐d flow about a surface‐penetrating cylinder—are described to illustrate the capabilities of our code and methods. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The fully non‐linear free‐surface flow over a semi‐circular bottom obstruction was studied numerically in two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time domain that allows the prediction of a number of transient phenomena, such as the generation of upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was performed for a range of values of the depth‐based Froude number up to 2.5 and non‐dimensional obstacle heights, α up to 0.9. When wave breaking does not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream solitary waves break. A systematic study was undertaken to define the boundaries of each type of breaking and non‐breaking pattern and to determine the drag and lift coefficients, free‐surface profile characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we describe a numerical model to simulate the evolution in time of the hydrodynamics of water storage tanks, with particular emphasis on the time evolution of chlorine concentration. The mathematical model contains several ingredients particularly designed for this problem, namely, a boundary condition to model falling jets on free surfaces, an arbitrary Lagrangian–Eulerian formulation to account for the motion of the free surface because of demand and supply of water, and a coupling of the hydrodynamics with a convection–diffusion–reaction equation modeling the time evolution of chlorine. From the numerical point of view, the equations resulting from the mathematical model are approximated using a finite element formulation, with linear continuous interpolations on tetrahedra for all the unknowns. To make it possible, and also to be able to deal with convection‐dominated flows, a stabilized formulation is used. In order to capture the sharp gradients present in the chlorine concentration, particularly near the injection zone, a discontinuity capturing technique is employed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
小尺度波(扰动波)迭加在大尺度波(未受扰动波)上形成的波动一般之为“骑行波”。研究了有限可变深度的理想不可压缩流体中的骑行波的显式Hamliltn表示,考虑了自由面上流体与空气之间的表面张力。采用自由面高度和自由面上速度势构成的Hamilton正则变量表示骑行波的动能密度,并在未受扰动波的自由面上作一阶展开。运用复变函数论方法处理了二维流动。先用保角变换将物理平面上的流动区域变换到复势平面上的无限长带形区域,然后在复势平面上用Fourier变换解出Laplace方程,最后经Fourier逆变换求出了扰动波速度热所满足的积分方程。作为特例考虑了平坦底部的流动,导出了动能密度的显式表达式。这里给出的积分方程可以替代相当难解的Hamilton正则方程。通过求解积分方程可得出agrange密度的显式表达式。本文提出的方法约研究骑行波的Hamilton描述以及波的相互作用问题提供了新的途径,有助于了解海面的小尺度波的精细结构。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号