首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
NaYF4∶Eu3+, Tm3+, Yb3+材料中Stokes和反Stokes发光研究   总被引:1,自引:0,他引:1  
合成了Eu3+,Tm3+和Yb3+掺杂的NaYF4材料。360 nm光激发呈蓝色发光,峰值位于452 nm,对应Tm3+的1D2→3F4跃迁;395 nm光激发呈橙色发光,峰值位于591 nm,对应Eu3+的5D0→7F1跃迁;409 nm光激发呈红色发光,峰值位于613 nm,对应Eu3+的5D0→7F2跃迁;980 nm光激发呈蓝色和红色发光,发光峰位于474和646 nm。蓝光来源Tm3+的1G4 →3H6跃迁,红光来源Tm3+的1G4→3F4跃迁。在双对数曲线中,蓝光474 nm和红光646 nm的斜率分别为2.1和2.4,在980 nm光激发下,蓝光和红光发射都是双光子过程。还研究了材料的吸收光谱,并利用X射线衍射,扫描电镜测试了材料的物相结构和微观形貌。结果表明:NaYF4∶Eu3+, Tm3+, Yb3+材料具有较规则的六方相结构,结晶良好。  相似文献   

2.
利用溶胶—凝胶方法制备了Er3+和Yb3+共掺杂的Y2O3纳米荧光粉。采用Er3+的2H11/2→4I15/2和4S3/2→4I15/2绿色上转换荧光强度比的方法,研究了由980 nm二极管激光器泵浦所导致的荧光粉样品表面温升现象。结果表明,随着泵浦功率的增加,样品表面温度大幅度上升, 当功率达到1 000 mW时,样品表面的温度达到820 K。该现象对分析稀土离子上转换过程中所出现的功率饱和现象起着重要的作用,并且在高温传感材料、医学生物细胞烧孔方面有着广阔应用前景。  相似文献   

3.
以脲素为燃烧剂,采用燃烧法在较低引发温度下快速合成了CaAl12O19xMn4+发光粉体。采用正交分析法考查了煅烧温度、Mn4+掺杂量、燃烧剂用量和煅烧时间等合成条件对荧光粉发光强度的影响。实验结果表明:煅烧温度1 200 ℃,Mn4+掺杂量2%,燃烧剂/CaAl12O19摩尔比为50∶1, 煅烧时间5 h为最佳合成工艺,制得的荧光粉的发射强度为95.8。该荧光粉由于Mn4+的2E—4A2跃迁,在643和656 nm呈现强红色发光,其中656 nm为最大发射峰;在470 nm处的最大激发峰是属于Mn4+配位场的4A2—4T2跃迁,470 nm激发峰可以与LED芯片的465 nm发射相匹配。  相似文献   

4.
以金属Au-Al为催化剂,在温度为1 100 ℃,N2气流量为1 500 sccm、生长时间为30 min,从Si(100)衬底上直接生长了直径约为50~120 nm、长度为数百纳米的高密度、大面积的Si纳米线。然后,利用Tb2O3在不同温度(1 000~1 200 ℃)、掺杂时间(30~90 min)和N2气流量(0~1 000 sccm)等工艺条件下对Si纳米线进行了Tb掺杂。最后,对Si(100)衬底进行了Tb掺杂对比。室温下,利用荧光分光光度计(Hitachi F-4600) 测试了Tb掺杂Si纳米线的光致发光特性。实验研究了不同掺杂工艺参数(温度、时间和N2气流量)对Tb3+绿光发射的影响。根据Tb3+能级结构和跃迁特性对样品的发射光谱进行了分析。结果表明,在温度为1 100 ℃,N2气流量为1 500 sccm、时间为30 min等条件下制备的Si纳米线为掺杂基质,Tb掺杂温度为1 100 ℃,N2气流量为1 000 sccm、光激发波长为243 nm时,获得了最强荧光发射,其波长为554 nm(5D4→7F5),同时还出现强度相对较弱的494 nm(5D4→7F6),593 nm(5D4→7F4)和628 nm(5D4→7F3)三条谱带。Tb掺杂的体Si衬底在波长554 nm处仅有极其微弱的光致发光峰。  相似文献   

5.
采用高温固相法合成了Ba3SiO4Cl2∶Eu2+蓝绿色荧光粉,并测量了材料的光谱特性等。研究结果显示,在365 nm近紫外光激发下,Ba3SiO4Cl2∶Eu2+材料呈双峰宽带发射,主发射峰分别为445和510 nm;分别监测这两个发射峰,所得激发光谱覆盖范围为250~450 nm,主激发峰分别为350和400 nm,但光谱分布不同,说明两发射峰来源于不同的Eu2+发光中心。研究了Eu2+掺杂浓度对材料光谱性能的影响,发现随Eu2+掺杂量的增大,445 nm发射峰的强度增加,而510 nm发射峰的强度减弱。采用去离子水清洗Ba3SiO4Cl2∶Eu2+材料后,445 nm发射峰消失,只保留了510 nm发射峰,且发射峰的强度明显减弱。  相似文献   

6.
采用高温固相法合成了不同Yb3+和Er3+掺杂浓度的BaIn6Y2O13上转换发光材料。XRD数据显示,所合成的BaIn6Y2O13∶Yb3+, Er3+属于六方晶系,引入激活剂并没有改变基质的晶体结构。利用971 nm半导体激光器激发样品,测量样品在不同激发光密度下上转换发射光谱和发射光功率,计算了上转换能量效率。数据表明在激发密度不变,激活剂浓度增加时,上转换光绿红比减小;激活剂浓度不变激发光密度增加时,发射光绿红比增大。分析表明是由于Er3+之间的交叉弛豫增强导致绿红比随激活剂掺杂浓度的增加而减小;Yb3+和Er3+之间的能量传递和Er3+的激发态吸收增强导致绿红比随激发密度的增加而增大。随着激发功率增加, 在较低激发功率时, 上转换绿光发射强度与激发功率的二次方成正比; 在较高激发功率时, 上转换绿光发射强度与激发功率的一次方成正比, 与报道的结果一致。能量效率存在极大值, 分别为0.38%(Yb3+掺杂浓度3%, Er3+掺杂浓度1%)和0.06%(Yb3+掺杂浓度9%, Er3+掺杂浓度3%), 产生极值的一个原因是4I13/2亚稳态能级寿命较长, 聚集了大量电子, 使基态电子急剧减少, 导致上转换泵浦效率降低。  相似文献   

7.
采用溶胶-凝胶(sol-gel)法制备了Eu掺杂的SiO2干凝胶,分别用光致发光(PL)光谱、透射电镜(TEM)、扫描电镜(SEM)、红外吸收(IR)谱等分析手段对样品进行了表征,研究了SiO2的基质中Eu3+、Eu2+的发光特性以及退火温度对发射光谱的影响,并对其发光机理进行了分析。结果表明,样品掺杂均匀,颗粒尺寸大约在50~80 nm,硼(B)离子进入SiO2网格,成为了基质的一部分,改变了基质的网络结构。当采用258 nm激发样品时,随着退火温度的升高,红光发射强度先增强后减弱。对于经800 ℃退火处理的样品红光发射最强,出现了576 nm(5D07F0),620 nm(5D07F2),658 nm(5D07F3)3条谱线,其中主峰位于 620 nm红光发射,对应于Eu3+离子的5D07F2超灵敏跃迁,进一步说明B离子参与到基质中,形成了Si—O—B键,导致Eu3+离子所处配位环境的对称性降低,从而有利于Eu3+离子的特征发射;当采用271 nm激发样品时,随着退火温度的升高,蓝光发射强度先增强后减弱,经850 ℃退火的样品400~500 nm蓝光发射最强,归属于Eu2+的5d→4f的跃迁发射,证明在铝离子(Al3+)存在的情形下,在高温退火过程中Al3+部分取代Si4+形成AlO-4基团,掺杂Eu3+填补AlO-4基团附近的空位,增加了Eu3+周围的AlO-4四面体中氧原子的电子给予能力,使得Eu3+还原成Eu2+,从而得到了较强的蓝光发射。但是,当退火温度达到900 ℃时,由于稀土离子发生位置的迁移形成团簇红光和蓝光都明显地降低。  相似文献   

8.
稀土掺杂长余辉发光玻璃的研究   总被引:8,自引:1,他引:7  
分别采用空气气氛和还原气氛,制备了稀土Eu2O3,Dy2O3掺杂的铝硅酸盐玻璃,利用荧光光谱仪对样品进行了测试。结果表明:空气气氛条件下制备的铝硅酸盐玻璃样品均不具备长余辉发光性能, 其激发光谱和发光光谱均是Eu3+的5Di(i=0, 1)→7Fj(j=0~4)跃迁的典型光谱。经还原气氛处理后,单掺和双掺的铝硅酸盐玻璃样品均具有长余辉发光现象,单掺Eu2+的发光峰位于462 nm,而双掺Eu2+和Dy3+的发光峰位于457 nm,且双掺Eu2+和Dy3+的样品陷阱能级较深,样品的发光持续时间长达12 h以上。  相似文献   

9.
徐晶  夏威  邓华  边福强  肖志国 《发光学报》2009,30(5):617-623
研究了Sr2-xBaxSiO4 : Eu2+ 荧光材料作为白光LED发光体的可行性和应用特性。采用高温固相法制备了Sr2-xBaxSiO4 : Eu2+ 材料系列样品,对样品的成分配比、阴离子掺杂、合成温度和时间进行了系统实验,利用XRD、SEM、光谱测试及封装测试等手段对样品的组成、结构、形貌特征及应用性能进行了表征。研究表明Sr2-xBaxSiO4 : Eu2+ 荧光材料具有激发范围宽(300~500 nm)、发射范围宽(500~600 nm)的特点。通过控制碱土金属的比例可以精确控制材料的发射波长,在Ba掺杂范围0≤x<0.5内可以获得550~560 nm的发射,与YAG材料相比在光谱上增加了红色成分。通过引入恰当助熔成分进行阴离子掺杂,精确控制烧结工艺等手段极大提高了550~560 nm发射的发光强度和光转换效率。封装应用和测试证明,本研究优化制备的高性能Sr2-xBaxSiO4 ∶ Eu2+ 荧光材料的光转换效率普遍可达到YAG材料的95%,在显色指数、色温和色纯度方面也优于或相当于YAG材料,并且具有较好的芯片适应性和较多的红色成分,是较为理想的应用于白光LED的荧光材料,特别适合于暖白光LED的制备。  相似文献   

10.
在无模板条件下,通过调节Tb3+的浓度水热法控制合成了CePO4∶Tb花状团簇。花状团簇由直径为80~90 nm、长度约为1 μm的纳米线组成。利用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和荧光光谱分析了产物的相结构、晶粒尺寸、形貌及发光性能。当Ce3+/Tb3+摩尔比为0.850∶0.150时,Tb3+在过量的磷酸体系中诱导纳米线组装生长成花状团簇。发现反应物Ce3+/Tb3+摩尔比和磷酸浓度影响产物形貌的控制合成。并推测了花状团簇的生长机制。产物CePO4∶Tb的荧光性质测试表明,当Ce3+/Tb3+摩尔比为0.850∶0.150时,所合成的花状团簇的发射强度达到最大值,Tb3+的掺入量继续增加其发光强度迅速降低。  相似文献   

11.
通过溶胶-凝胶法制备了纯相的Na2WO4∶Sb3+荧光粉,通过X射线衍射表征了其晶体结构, 使用紫外-可见分光光度计研究了样品的发光性质。结果表明,用250~320 nm范围的紫外光激发时, Na2WO4∶Sb3+荧光粉可在410~550 nm范围内给出较强的光发射。其最佳激发波长为280 nm, 最强发射峰在470 nm处。Na2WO4∶Sb3+荧光粉的最佳制备温度为800 ℃, Sb3+的最佳掺杂摩尔分数为0.01。对Na2WO4∶Sb3+荧光粉的发光机理也进行了初步探究。  相似文献   

12.
采用高温固相法合成了(La,Ce,Tb)BO3绿色发光粉,并对该发光粉进行了XRD和SEM分析。结果表明:(La,Ce,Tb)BO3的晶体结构和LaBO3相同,Ce3+、Tb3+的掺入并没有改变晶体的结构,发光粉颗粒大小均匀,形貌规则,粒度在5 μm左右。研究了(La,Ce,Tb)BO3的光谱性质,在(La,Ce,Tb)BO3的发射和激发光谱中除了有Tb3+的特征发射和激发峰外,还有Ce3+的特征发射和激发峰。比较了(La,Ce)BO3发射光谱和(La,Tb)BO3的激发光谱,两者存在重叠,这为Ce3+→Tb3+的能量传递提供了条件。将(La,Ce,Tb)BO3的发射光谱与商品粉(La,Ce,Tb)PO4进行比较,两者的发射主峰都在541 nm处, (La,Ce,Tb)BO3在489 nm处的峰位稍有红移,通过计算表明,(La,Ce,Tb)BO3的发光亮度达到商品粉(La,Ce,Tb)PO4的94.7%。因此,(La,Ce,Tb)BO3是一种很有应用前景的绿色发光粉。  相似文献   

13.
合成了六种高氯酸掺杂稀土(Dy3+,Tm3+)与二苯甲酰基甲基亚砜的配合物。经元素分析、稀土络合滴 定、摩尔电导率及差热-热重分析,表明配合物组成为 (Dyx,Tmy)L5(ClO4)3·3H2O(x : y=1.000 : 0.000,0.995 : 0.005,0.990 : 0.010,0.950 : 0.050,0.900 : 0.100,0.800 : 0.200;L=C6H5COCH2SOCH2COC6H5)。并详细讨论了六种稀土配合物的荧光光谱。从配合物的荧光光谱图可以看出,Tm3+对Dy3+的荧光有增强效应。这可能 是因为在惰性稀土离子Tm3+与活性稀土离子Dy3+之间有能量的传递。而且当Dy3+与Tm3+的量比为0.950 : 0.050时,掺杂配合物表现出最佳的发光性质。另外,Tm3+对577.4 nm处4F9/26H13/2 峰的荧光敏化作用的程度高于对487 nm处4F9/26H15/2 峰的荧光敏化作用。4F9/26H15/2 峰的荧光强度增强了212%,而4F9/26H13/2峰的荧光强度增强了264%。所以,Dy3+离子的两个特征峰的发射强度比趋近于1,为1.078,使得配合物在紫外灯下发白色荧光。有可能成为一类发白色荧光的发光材料。  相似文献   

14.
共沉淀法制备NaYF4 : Tm3+,Yb3+的上转换发光   总被引:4,自引:3,他引:1       下载免费PDF全文
通过共沉淀法制备Tm3+和Yb3+掺杂的NaYF4上转换发光材料。其中Tm3+和Yb3+的摩尔分数分别为0.01%,0.1%。在室温下测试了NaYF4 : Tm3+,Yb3+材料在300~1 100 nm的吸收光谱。利用X射线衍射(XRD),扫描电镜(SEM)测试了合成材料的物相结构和微观形貌。结果表明:NaYF4 : Tm3+,Yb3+材料为六方相晶体,其颗粒大小约为50~60 nm,产物结晶良好,含有少量杂相。在798 nm近红外光激发下,测试了样品的上转换发光光谱。观察到了蓝、绿色上转换发光。讨论了上转换发光的可能机理,蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Tm3+1D23H5跃迁。  相似文献   

15.
采用固相法制备了LiM(M=Ca, Sr, Ba)BO3 : Dy3+材料,并研究了材料的发光特性。LiM(M=Ca, Sr, Ba)BO3 : Dy3+材料的发射光谱均呈多峰发射,对应于Ca,Sr,Ba,其主发射峰分别是Dy3+4F9/26H15/2(484,486,486 nm),6H13/2(577,578,578 nm)和6H11/2(668,668,666 nm)跃迁。监测黄色发射峰时,所得激发光 谱峰值位置相同,主激发峰分别为331,368, 397,433,462,478 nm,对应Dy3+6H15/24D7/2,6P7/2,6M21/2,4G11/2,4I15/26F9/2跃迁。研究了敏化剂Ce3+及电荷补偿剂Li+、Na+和K+对LiM(M=Ca, Sr, Ba)BO3 : Dy3+材料发光强度的影响。结果显示:加入敏化剂Ce3+提高了材料的发光强度,发光强度最大处对应的Ce3+浓度为3%;加入电荷补偿剂Li+、Na+和K+后,材料的发光强度也得到了明显提高,但发光强度最大处对应的Li+、Na+和K+浓度不同,依次为4%、4%和3%。  相似文献   

16.
以亚甲基双丙烯酰胺为网络剂,采用高分子网络凝胶法合成了Sr2CeO4∶Dy3+荧光粉,并表征其结构、颗粒形貌及发光性能。研究结果表明:Sr2CeO4∶Dy3+无其他杂相存在且粉末颗粒大小均匀。其紫外-可见吸收带集中在480 nm附近;在370 nm紫外光激发下,其发射图谱为一多峰发射;监测470 nm的发射峰,所得样品的激发谱为一双峰宽谱,峰位为292和338 nm。同时研究了Dy3+掺杂浓度对样品发射光谱的影响,结果显示,随着Dy3+浓度的增大,其黄、蓝发射峰强度比值逐渐增大,但发光强度呈现先增大后减小的趋势,在Dy3+掺杂浓度为0.4 mol%时达到最大值。  相似文献   

17.
以EDTA为络合剂,用水热法合成了Er3+,Tm3+和Yb3+共掺杂的NaYF4纳米晶。XRD和TEM的结果表明:粒径约为30 nm,属于六方晶系。在980 nm半导体激光器激发下,研究了不同Er3+离子掺杂浓度对Tm3+和Er3+离子上转换发光性能的影响,光强与泵浦功率的双对数曲线表明,474,525,539,650 nm的发射均属于双光子过程,408 nm的发射属于三光子过程。讨论了样品的协作敏化和声子辅助共振能量传递的上转换发光机制。  相似文献   

18.
刘林峰  吕树臣 《发光学报》2009,30(2):228-232
利用共沉淀法制备了纳米晶Gd2O3 : Eu3+发光粉体。 在不同掺杂浓度、不同煅烧温度的系列样品中,均观测到Eu3+离子的特征发射。样品的晶相与发射性质的研究表明:所制备的样品经800~1 300 ℃热处理后,晶相为立方相,1 400 ℃时开始向单斜相转变。荧光强度与Eu3+离子掺杂浓度关系研究表明:在不同掺杂浓度中,Eu3+离子浓度为4%时其相对发射强度最强。在三个不同的煅烧温度中,经800 ℃煅烧的样品其发光效果最好。此外还观察到电荷转移激发态以及基质、Gd3+与Eu3+之间的能量传递。激发谱包含三部分,即电荷转移带、Eu3+的4f内壳层电子跃迁和Gd3+的激发谱。  相似文献   

19.
韩丽  宋超  刘桂霞  王进贤  董相廷 《发光学报》2013,34(10):1288-1294
采用水热法制备了Ca0.8La0.2-x-y MoO4∶xTb3+,yEu3+荧光材料,并对其结构和发光性能进行了研究。X射线衍射(XRD)分析表明,合成的样品为四方晶系的CaMoO4白钨矿结构,稀土离子La3+、Eu3+、Tb3+的引入不会改变主晶格的结构。荧光光谱表明,与CaMoO4∶Eu3+荧光粉相比,基质中掺杂La后的Ca0.8La0.15MoO4∶0.05Eu3+样品的616 nm(5D0→7F2)处的特征发射峰明显增强。在285 nm紫外光激发下,Ca0.8La0.16-y MoO4∶0.04Tb3+,yEu3+(y=0.01,0.03,0.05,0.07)系列样品在545 nm和616 nm处出现的发射峰,分别对应于Tb3+的5D4→7F5跃迁和Eu3+的5D0→7F2跃迁,并且随着Eu3+掺杂量的增加,Tb3+的发射峰逐渐减弱,Eu3+的发射峰逐渐增强,表明该荧光材料中存在着由Tb3+到Eu3+能量传递。随着Ca0.8La0.16-y MoO4∶0.04Tb3+,yEu3+(y=0.01,0.03,0.05,0.07)系列样品中激活剂Eu3+掺杂量的增加,荧光粉实现了从绿色→黄绿→黄色→红色的颜色可调。  相似文献   

20.
杨平  田莲花  田荣 《发光学报》2009,30(6):768-772
采用高温固相法制备了Eu3+离子激活的Ca9R(VO4)7(R = Y, La, Gd)红色发光粉,并利用荧光光谱对发光粉的特性进行研究。激发光谱中,Ca9Y(VO4)7 : Eu3+ , Ca9La(VO4)7 : Eu3+和Ca9Gd(VO4)7 : Eu3+都有两个宽的VO3-4激发带和Eu3+的特征激发峰。发射光谱中,在Ca9Y(VO4)7 : Eu3+ 和Ca9La(VO4)7 : Eu3+中的350~550 nm范围内出现VO3-4的发射带,而在Ca9Gd(VO4)7 : Eu3+中却没有观察到VO3-4的发射。在这三种发光粉中,Ca9Gd(VO4)7 : Eu3+的发光强度远远高于其它两种,这是由于Gd3+的存在有效地使能量通过Gd3+ →VO3-4 → Eu3+及Gd3+ → Eu3+的两种方式进行能量传递,从而提高了Eu3+发光效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号