首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of flat superhydrophilic surfaces have been fabricated for biological and industrial applications. We report here the preparation of a simple and inexpensive non-polar curved superhydrophilic surface. This surface has dual-scale surface roughness, on both micro- and nanoscales. Curved surfaces with a near-zero water contact angle and ‘complete wetting’ are demonstrated. By using a conventional plasma etching process, which creates microscale irregularity on an aluminum surface, followed by an anodization process which further modifies the plasma etched surface by creating nanoscale structures, we generate a surface having irregularities on two-scales. This surface displays a semi-permanent superhydrophilic property (if the surface has no damage by the exterior failure), having a near-zero contact angle with water drops. We further report a simple and inexpensive curved (i.e., non-planar) superhydrophilic structure with a near-zero contact angle. The dual-scale character of the surface increases the capillary force effect and reduces the energy barriers of the nanostructures.  相似文献   

2.
Silicone polymer (PDMS), widely used for micro-fluidic and biosensor applications, possesses an extremely dynamic surface after it is subjected to an oxygen plasma treatment process. The surface becomes extremely hydrophilic immediately after oxygen plasma exposure by developing silanol bond (SiOH), which promotes its adhesion to some other surfaces like, silicon, silicon dioxide, glass, etc. Such a surface, if left in ambient dry air, shows a gradual recovery of hydrophobicity. We have found an identical behavior to occur to surfaces coated with a thin continuous film of SOG (methyl silsesquioxane). The chemistry induced by oxygen plasma treatment of a spin-on-glass (SOG) coated surface provides a much higher density of surface silanol groups in comparison to precleaned glass, silicon or silicon dioxide substrates thus providing a higher bond strength with polydimethyl siloxane (PDMS). The bonding protocol developed by using the spin coated and cured SOG intermediate layer provides an universal regime of multi level wafer bonding of PDMS to a variety of substrates. The paper describes a contact angle based estimation of bond strength for SOG and PDMS surfaces exposed to various combinations of plasma parameters. We have found that the highest bond strength condition is achieved if the contact angle on the SOG surface is less than 10°.  相似文献   

3.
Using first-principles calculations we investigated the electronic properties of niobium and molybdenum mononitride (NbN and MoN, respectively) surfaces and their dependence on the surface orientation and termination. Work functions calculated for polar surfaces strongly depend on the surface termination, with nitrogen-terminated surfaces yielding the highest value, up to 6.6 eV for the fully N-covered MoN(0 0 1) surface. The dependence of the work function on coverage for the polar surface is monotonic for nitrogen termination, but does not follow the same trend in the case of metal termination. The work function decreases by ∼2 eV for MoN from a 100% metal-terminated surface to at least 25% metal-terminated surface, and then increases rapidly between 25% and 0% metal-terminated surface to recover its nitrogen termination result. The same trend was obtained for NbN. We observed a significant increase in the charge of the surface metal atom, up to its bulk value, with decreasing metal surface coverage. Electron transfer from the metal surface atoms to the subsurface atoms can explain these submonolayer metal coverage results. Finally we found that for the non-polar surfaces, the mononitrides work functions are generally lower than the work functions of the corresponding simple metal surfaces.  相似文献   

4.
We studied the atomic assembly mechanisms of non-polar GaN films by the molecular dynamics method as a function of the N:Ga flux ratio at a fixed adatom energy on non-polar planes. Our study revealed that high quality crystal growth occurred only when off-lattice atoms (which are usually associated with amorphous embryos or defect complexes) formed during deposition were able to move to unoccupied lattice sites by thermally activated diffusion processes, which attests to the experimental difficulties in obtaining smooth surfaces due to dense stacking faults lying in non-polar GaN. Furthermore, surface structures on different planes played an important role. We further suggested favorable conditions for growing high quality GaN films and nano-structures along non-polar directions.  相似文献   

5.
A new monolayer film with tunable hydrophilicity and hydrophobicity was constructed on glass coverslips by stepwise grafting with both phosphorylcholine (PC) and stearyl groups. The glass coverslips were firstly hydroxylized to provide reactive sites on the surfaces. Subsequently, chlorodimethyl-n-octadecylsilane was chemically adsorbed onto the surface to impart the required hydrophobicity. The remaining hydroxyl groups were grafted with 1,6-diisocyanatohexane. Finally, 2-hydroxy-2-ethylphosphorylcholine was grafted onto the attached isocyanate groups. Dynamic contact angle (DCA) measurement and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the step-by-step modification process was successful. The adsorption of bovine serum albumin and bovine plasma fibrinogen, as well as the adhesion and aggregation of platelets were suppressed with the introduction of phospholipid moieties on the surfaces. This tunable surface may have potential applications in the fields of separation science, tissue engineering, cytobiology, drug delivery and gene therapy.  相似文献   

6.
Atmospheric pressure plasma jet operated in argon was utilized to modify surfaces of glass, acrylic, and PTFE dielectrics. This paper describes the influence of the dielectric substrate on operation and properties of plasma. Two modes of operation (each of those have two patterns) were described. The transition from one mode to another, values of the dissipated power, and spreading of plasma over the dielectric surfaces strongly depended on the substrate material. Additionally, three methods of plasma spreading estimation were presented and discussed.  相似文献   

7.
Combining structure and liquid repellent coatings to optimise non-wettability is a well-established field. However, the area in recent years has been dominated by data on water repellency. The work here provides data on how certain plant structures can be used to develop surfaces that provide repellency towards both polar and non-polar, low surface tension fluids. Combining fluoropolymer coatings with ‘hairy’ fibres is particularly beneficial for providing liquid-repellent textiles. None of these surfaces can however be regarded as super-repellent to low surface tension liquids (i.e. with little difference in advancing and receding contact angles).  相似文献   

8.
Silica glass can be machined by irradiation with laser plasma soft X-rays on nano- and micrometer scale. We have investigated the ablation process of silica glass induced by laser plasma soft X-ray irradiation. We observed ionic and neutral species emitted from silica surfaces after irradiation. Dominant ions and neutrals are O+ and Si+ ions and Si, O, SiO and Si2 neutrals, respectively. The ions have kinetic energies of 13 and 25 eV, which are much higher than those of particles emitted by evaporation. The energy of laser plasma soft X-rays absorbed to silica glass at a fluence of 1.4 J/cm2 is estimated to be 380 kJ/cm3, which is higher than the binding energy of SiO2 of 76 kJ/cm3. These results suggest that the most of the bonds in silica glass are broken by absorption of laser plasma soft X-rays, that several percent of the atoms are ionized, and that neutral atoms are emitted together with repulsive ions. The process possibly enables us to fabricate nano structures.  相似文献   

9.
Organosilane self-assembled monolayers (SAMs) with perfluoroalkyl groups (Rf) on glass surfaces were used for arraying proteins and cells on chips. Quartz crystal microbalance measurements confirmed the inhibition of protein adsorption on Rf-SAM-modified surfaces and showed efficient adsorption on hydroxyl-, carboxyl-, and amino group-modified surfaces. The characteristics of Rf-modified surfaces were evaluated using solvent contact angle measurement and Fourier transform infrared (FTIR) spectroscopy. The Rf surface was highly water- and oil-resistant, as inferred from the contact angles of water, oleic acid, and hexadecane. Specific peaks of IR spectra were detected in the region from 1160 to 1360 cm−1. Etching with dry plasma completely exfoliated the Rf-SAM, exposing the underlying intact glass surface. Modification conditions were optimized using contact angle and FTIR measurements. After dry plasma processing, the contact angles of all solvents became undetectable, and the IR peaks disappeared. Micrometer scale protein and cell patterns can be fabricated using the proposed method. Protein adsorption on micropatterned Rf-SAM-modified chips was evaluated using fluorescence analysis; protein adsorption was easily controlled by patterning Rf-SAM. PC12 and HeLa cells grew well on micropatterned Rf-SAM-modified chips. Micropatterning of Rf-SAM by dry plasma treatment with photolithography is useful for the spatial arrangement of proteins and cells.  相似文献   

10.
We present a plasma mirror configuration that improves the temporal pulse contrast of femtosecond terawatt laser pulses by a factor of thousand using a single antireflection coated glass target. The device provides ultra-high contrast for experiments with a maximum repetition rate of 10 Hz. A third-order cross-correlator has been used to measure the temporal pulse contrast for several different plasma mirror targets. It is shown that the ASE can be suppressed to a level of 10−11. A comparison between a triggered and an untriggered plasma mirror reveals differences in the intensity distribution of the focused beam. The triggered plasma mirror produces a slightly larger focus due to the expansion of the triggered plasma mirror at −3 ps before the main pulse. We propose a cost-effective AR-coated and a blank glass target to reduce the costs of the consumable target material. High-harmonic radiation on solid surfaces has been generated with different plasma mirror targets to demonstrate the high laser contrast.  相似文献   

11.
Conducting glass fiber fabrics (GFs) with double-scale roughness were fabricated by growing carbon nanofibers (CNFs) on its surfaces. The homogeneous growth of CNFs was achieved by the decomposition of C2H2 on glass fibers surfaces coated with Fe-doped mesoporous silica films at different C2H2 flow rates. The chemical composition and surface structure of the GFs before and after CNFs growth were examined by electron dispersive X-ray spectrometry (EDX), N2 full isotherms, and scanning electron microscopy (SEM). The electrical properties of the GFs were examined using a four-probe volume resistivity tester. The CNFs with a mean diameter of 50 nm grew uniformly and densely on the glass fiber surfaces. The CNFs/GFs fabrics surface exhibited excellent electrochemical properties due to the CNFs. The specific capacitance of the GFs ranged from 0.2 to 4 F/g at 1 A/g in a 1 M H2SO4 aqueous solution.  相似文献   

12.
Effects of gas pressure and plasma power on the growth of carbon-based nanostructures (CNSs) have been studied in detail. Multi-walled carbon nanotube (MWCNTs) and carbon nanowalls (CNWs) were synthesized on glass substrates via radio frequency plasma-enhanced chemical vapor deposition (RFPECVD) technique. Surface morphologies of the films have been studied by SEM and TEM. When the gas pressure increases from 120 to 300 Pa, the deposited carbon material changes from MWCNTs to carbon nanowalls (CNWs). Additionally, the density of carbon nanostructures increases with the gas pressure. The radio frequency (RF) plasma power ranging from 600 to 2400 W was applied during the activation and deposition process. The plasma enhances the decomposition of carbon atoms to deposit onto the surfaces of catalyst particles. Whereas an exorbitant RF plasma power can destroy the already deposited carbon nanostructures.  相似文献   

13.
The processes of the sputtering and modification of surfaces of polycrystalline films of the ternary solid solution Pb1 ? x Sn x S (x = 0.9–1.0) in a high-density Ar plasma of high-frequency low-pressure inductive discharge are studied. Films with thicknesses of 1–4 μm are grown on glass substrates using the “hot-wall” method and consist of plate-like crystallites. It is established that the sputtering rate for lead-tin sulfide films does not exceed 2.0 nm/s, which is determined by the presence of oxygen-containing compounds on the surfaces. In the case of plate-like crystallites with nanodimensional thicknesses, the effect of smoothing of the developed surfaces of the polycrystalline Pb1 ? x Sn x S layers during plasma treatment is observed; this is important for fabricating multilayer device structures.  相似文献   

14.
This report focuses on both the characterization of organically modified fluorohectorite (Fh) clay particles and their electric-field-induced alignment when suspended in a non-polar liquid (silicone oil). Thermal decomposition temperatures of the surfactant molecules adsorbed on the clay surfaces and those being intercalated between clay crystalline layers were measured by thermal gravimetric analysis (TGA). Zeta potential measurements confirmed the successful modification of the clay surfaces. Optical microscopy observations showed that the sedimentation of modified particles was much slower compared to that of the non-modified system. It was shown that organic modification has a significant effect on colloidal stability of the system, preventing particles from forming large aggregates when suspended in a non-polar liquid. There are also signs of a slight increase in overall alignment of the clay particles when exposed to in an electric field, with the nematic order parameter (S2) being higher for the organically modified particles, compared to that of the non-modified counterparts. This behaviour is mainly a result of the formation of smaller and more uniform aggregates, in contrast to the large aggregate structures formed by non-modified clay particles.  相似文献   

15.
Barrier dielectric is an important part of atmospheric pressure dielectric barrier discharge (AP-DBD), which partly affects discharge characteristics. Conversely, discharge plasma also has influence on dielectric surface properties. To investigate this influence, some experiments were carried out on a home-built AP-DBD system with glass plate as barrier dielectric. Surface wettability was evaluated by water contact angles on a drop shape analysis system. The morphologies and chemical compositions of the glass sample surfaces were observed by field-emission scanning electron microscope (FESEM) and energy dispersive X-ray spectroscopy (EDS) attached to FESEM. The results show that water contact angles decrease as discharge energy increases, micro-discharge etching zones are formed into glass surface and different from the control glass in surface micro-structure and chemical compositions.  相似文献   

16.
We demonstrate the wetting behavior control of polymer surfaces doped with photochromic molecules by modifying the surface patterning features introduced by soft molding lithography. Such surfaces enhance their hydrophilicity upon UV irradiation due to conversion of the non-polar spiropyran dopant molecules to their polar merocyanine isomers. The process is reversed upon visible light irradiation. By changing the topological parameters of the introduced pattern, one achieves surface tuning from hydrophobic to hydrophilic situations. The difference for the contact angles between UV- and green-irradiated surfaces may become significantly higher than for the flat surfaces, for the specific patterning parameters analyzed. PACS 42.62.-b; 68.08.Bc; 83.50.Uv; 42.70.Jk; 42.70.Gi  相似文献   

17.
金属玻璃是由熔态经急冷淬火形成的非晶态金属,具有很高的力学强度和良好的抗腐蚀、耐辐照性能。关于中子、质子、电子和He、Ar离子等分别对金属玻璃的辐照损伤效应已有一些研究报道。托卡马克装置中的等离子体辐照是一种十分复杂的过程,它包括有质子、电子、光子、氘核和少量杂质重离子与中性粒子的混合辐照。本工作研究了某些金属玻璃在托卡马克装置真空器壁处经等离子体辐照以后的结构变化,探索金属玻璃用于托卡马克核聚变装置真空器壁的可能性。  相似文献   

18.
The phase morphology of multi-component polymer blends is governed by the interfacial interactions of its components. We discuss here the domain morphology in thin films of model binary and ternary polymer blends containing polystyrene, poly(methyl metacrylate), and poly(2-vinylpyridine) (PS, PMMA, PVP). When sandwiched between two non-polar surfaces, characteristic lateral phase morphologies are observed after the film formation by spin-coating. We discuss here two techniques, by which hierarchical lateral structures in polymer films can be made. The first method makes use of two simultaneously occurring interfacial instabilities. The second technique employs the effect of a variation of the enthalpic interaction parameters in a ternary polymer mixture on its lateral polymer phase morphology.  相似文献   

19.
Microlens arrays of high-refractive-index glass GeO2-SiO2 were fabricated by femtosecond laser lithography assisted micromachining. GeO2-SiO2 thin glass films, which were deposited by plasma-enhanced chemical vapor deposition, have a refractive index of 1.4902 and exhibit high transparency at wavelengths longer than 320 nm. Using a femtosecond laser, three-dimensional patterns were written inside resists on GeO2-SiO2 films, and then the patterns were transferred to the underlying films by CHF3 and O2 plasma treatments. This combined process enabled us to obtain uniform microlens structures with a diameter of 38 μm. The heights of the transferred lenses were approximately one-quarter the height of the resist patterns, due to differences in the plasma etching rates between GeO2-SiO2 and the resist. The lens surfaces were smooth. When 632.8-nm-wavelength He-Ne laser light was normally coupled to the lenses, focal spots with a diameter of 3.0 μm were uniformly observed. The combined process was effective in fabricating three-dimensional surfaces of inorganic optical materials.  相似文献   

20.
The ability to modify and reduce the electroosmotic flow (EOF) is one of the most influential parameters which affects iso-electric focusing (IEF) of proteins. Therefore capillaries are usually coated with polymers or gels to prevent non-specific adsorption and suppress the EOF in capillary iso-electric focusing (cIEF) of proteins. In this research hexamethyldisiloxane (HMDS) and 2,3-epoxy-1-propanol (glycidol) plasma polymerized films were deposited onto both surfaces of the capillary separation channel. Cathode solution pH 3, anode solution pH 10 and a carrier ampholyte, pharmalyte provided the necessary stable pH gradient. Simultaneous IEF of proteins in capillaries coated with hydrophobic and hydrophilic plasma polymerized films occurred within minutes. The electroosmotic force of uncoated glass capillaries was suppressed by 50% after deposition of 200 nm 2,3-epoxy-1-propanol compared with a 30% reduction of EOF when the capillary was coated with 200 nm HMDS. The hydrophilic 2,3-epoxy-1-propanol plasma polymerized film was more resistant with a stronger attachment to the glass surface than previously prepared acetonitrile plasma polymerized films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号