首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Fe-ZSM-5杂原子分子筛的合成与表征   总被引:13,自引:1,他引:12  
采用静态水热法分别以正丁胺、四丙基溴化铵为模板剂合成ZSM-5分子筛及Fe-ZSM-5杂原子分子筛;利用XRD与FT-IR对其结构进行表征;考察了Mo改性后分子筛催化剂上甲烷脱氢芳构化的反应性能。结果表明,Fe部分进入了分子筛的骨架,导致分子筛的结晶度及表面酸强度的下降,使Mo/Fe-ZSM-5催化剂的反应性能较Mo/HZSM-5显著下降。  相似文献   

2.
The influence of ultrasound-assisted rapid hydrothermal synthesis of aluminosilicate ZSM-5 catalysts was examined in this work. A series of MFI-type nanostructured materials with sonochemical approach and conventional heating were synthesized and evaluated for conversion of methanol to propylene reaction. The prepared samples were tested by characterization analyses such as XRD, FESEM, BET-BJH, FTIR, TPD-NH3 and TG/DTG. The obtained results confirmed that ultrasound treatment enhanced the nucleation process and crystal growth for ZSM-5 sample synthesized at moderate temperature of 250 °C. Therefore, it was found the formation of pure MFI zeolite with high crystallinity and improved textural, structural and acidic properties for ZSM-5(UH-250) sample compared with the other zeolites. This observation was attributed to the relationship between the perfect crystallization mechanism and catalytic properties, which led to producing an efficient MFI zeolite toward the optimal catalytic performance. In this manner, the methanol conversion and products selectivity of prepared materials were carried out in MTP reaction at 460 °C and atmospheric pressure. The ZSM-5(UH-250) zeolite with slower deactivation regime exhibited the constant level of methanol conversion (84%) and high propylene selectivity (78%) after 2100 min time on stream. Moreover, the synthesis pathway for MFI zeolite at moderate temperature and also deactivation mechanism of improved sample were proposed.  相似文献   

3.
Application of ultrasound power to the mother liquor is popular pretreatment for zeolite synthesis which offers a simple way of accelerating crystallization process and finetuning the properties of nanocrystalline zeolites. In this work, sonication-aided synthesis of mesoporous ZSM-5 at low temperature and ambient pressure was systematically studied, in an attempt to reach efficient and benign synthesis of zeolites with hierarchical pore structure, which has wide applications as catalysts and sorbents. The effects of sonication duration, power density, sonication temperature and seeding on the crystallization of ZSM-5 were investigated. The obtained samples were characterized by XRD, SEM, BET and VOCs capture. High quality mesoporous ZSM-5 can be obtained by a facile 5 d synthesis at 363 K, much faster than conventional hydrothermal synthesis. The reduced synthesis time was mainly attributed to the enhanced crystallization kinetics caused by the fragmentation of seeds and nuclei, while sonication radiation had little impact on the nucleation process. Compared with control sample, mesoporous ZSM-5 prepared by sonochemical method had higher surface area and mesoporosity which demonstrated improved adsorption performance for the capture of isopropanol.  相似文献   

4.
选用四种不同的分子筛(SAPO-34, ZSM-5, Y, MCM-41)与CuCoMn(高醇合成组元)构成双功能催化剂,利用N2吸脱附、H2-TPR、XRD、NH3-TPD等表征了催化剂的结构性质. 研究了催化剂在生物质基合成气一段法制取液态烃燃料的应用. 相比于CuCoMn催化剂,加入分子筛的双功能催化剂均不同程度地提高了液体烃燃料的选择性及收率,且收率按顺序递减呈CCM-ZSM-5>CCM-SAPO-34>CCM-Y>CCM-MCM-41. 同时,共沉淀法制备的CuCoMn-ZSM-5 (20wt%, Si/Al=100) 具有最佳的CO转化率(76%)及液体产物收率(30%). 相比于CuCoMn氧化物,双功能催化剂的比表面及孔容均得到提高. CCM-ZSM-5具有适中的微孔尺寸和中等强度的酸性,增加CCM-ZSM-5中ZSM-5含量或降低ZSM-5中的Si/Al比,均有利于提高酸性位的数量,主要是较弱的酸性位. 而共沉淀法制备的CCM-ZSM-5具有更好的金属分散性及还原性能.  相似文献   

5.
A series of ZSM-5 zeolites were synthesized by adding triethoxyphenylsilane (PTEOS) into the initial sol of the synthesis system. The samples were studied by XRD, SEM, N2 adsorption-desorption and acid assessment of d3-acetonitrile adsorption. Characterization results showed that the crystal size of the ZSM-5 zeolites could be adjusted in a certain range by introducing different contents of PTEOS. Besides, the resultant materials possess hierarchical porosity in addition to those micropores generated by the MFI channels. Moreover, supported Mo/ZSM-5 catalysts were prepared, and their catalytic performances were investigated in the methane non-oxidative aromatization. It was found that the Mo/ZSM-5 catalyst, bearing suitable crystal size and mesoporous characteristic showed relatively high shape-selectivity to benzene and high stability for the reaction of methane aromatization.  相似文献   

6.
采用液态离子交换法制备了不同负载量的镍改性ZSM-5分子筛催化剂,并考察了上述催化剂的微观结构和物理化学特性及其在NH3-SCR反应中的催化性能。结果表明:在负载量<10.9%时镍在分子筛中具有高度的分散性,而随着镍负载量的进一步增加,分子筛表面开始出现较大的NiO颗粒;镍元素只以+2价存在于分子筛催化剂中;在NH3-SCR反应中,镍负载量低于14.9%时,增加镍负载量将提高催化剂的低温活性;当反应温度超过300℃时,高温催化中心开始起作用,但随镍负载量的增加,高温活性开始下降时的温度逐渐降低。  相似文献   

7.
In this study, the sonochemical-assisted desilication method was applied as a special and innovative way of preparing hierarchical zeolites. The physicochemical properties of the hierarchical zeolites prepared using the sonochemical route were compared with those prepared using the conventional desilication method. Commercial zeolite with FAU-type structure was desilicated with a sodium and tetrabutylammonium hydroxide aqueous solution (NaOH/TBAOH) for 30 min. The ultrasound treatment process was performed using a QSonica Q700 sonicator (Church Hill Rd, Newtown, CT, USA) equipped with a ½″ diameter horn. The average power of sonication was 60 W, and the frequency was 20 kHz. During the sonication procedure, the alkaline solution with the catalyst precursor and sonicator probe were placed in an ice bath to keep them at room temperature. The prepared catalyst samples were examined by ICP-OES, XRD, SEM, NMR, and nitrogen sorption techniques. The acidic properties of the prepared hierarchical zeolite samples were assessed by means of IR spectroscopy with ammonia and carbon monoxide sorption as probe molecules. All catalysts were studied in the decarbonylation of furfural into furan.Independently of the application of ultrasonic irradiation, desilication of zeolites with an NaOH/TBAOH mixture extracts comparable amounts of silicon, resulting in comparable crystallinity and acidity. On the other hand, the samples prepared in the presence of ultrasounds revealed higher both mesoporosity and enhanced catalytic properties in the reaction of decarbonylation of furfural into furan in comparison with their counterparts prepared using the conventional method.  相似文献   

8.
Mesoporous nanocrystalline NiO-Al2O3 powders with high surface area were synthesized via ultrasound assisted co-precipitation method and the potential of the selected samples as catalyst was investigated in dry reforming reaction for preparation of synthesis gas. The prepared samples were characterized by N2 adsorption (BET), X-ray diffraction (XRD), Temperature programmed reduction and oxidation (TPR, TPO) and scanning electron microscopy (SEM) techniques. The effects of pH, power of ultrasound irradiation, aging time and calcination temperature on the textural properties of the catalysts were studied. The sample prepared under specified conditions (pH10, 70 W, without aging time and calcined at 600 °C) exhibited the highest surface area (249.7 m2 g−1). This catalyst was calcined at different temperature and employed in dry reforming of methane and the catalytic results were compared with those obtained over the catalysts prepared by impregnation and co-precipitation methods. The results showed that the catalyst prepared by ultrasound assisted co-precipitation method exhibited higher activity and stability with lower degree of carbon formation compared to catalysts prepared by co-precipitation and impregnation methods.  相似文献   

9.
Nanocrystalline zeolites with crystal size smaller than 100 nm are potential replacement for conventional zeolite catalysts due to their unique characteristics and advantages. In this study, the synthesis of nanocrystalline zeolite Y (FAU) and nanocrystalline zeolite beta (BEA) under hydrothermal conditions is reported. The effect of crystal size on the physico-chemical characteristics of the zeolite, Y (FAU), and beta (BEA) is reported. The properties of nanocrystalline zeolites Y and Beta with crystal size around 50 nm are compared with the microcrystalline zeolite Y and microcrystalline zeolite beta, respectively. The performance of the nanocrystalline zeolite as a catalyst was investigated in the cracking of used palm oil for the production of biofuel. The nanocrystalline zeolite catalytic activity was compared with the activity of microcrystalline zeolite in order to study the effect of crystal size on the catalytic activity. Both nanocrystalline zeolites gave better performance in terms of conversion of used palm oil as well as selectivity for the formation of gasoline fraction. The increase in surface area and improved accessibility of the reactant in nanocrystalline zeolites enhanced the cracking activity as well as the desired product selectivity.  相似文献   

10.
SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of ~?10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the “filtering effect” by the pores of ZSM-5.  相似文献   

11.
In this paper, the ultrasonic-assisted desilication technique was reported as an attractive and efficient way for the preparation of hierarchical zeolites with MFI structure type. The prepared materials were used as active catalysts for the dehydration of ethanol into diethyl ether and ethylene. For all catalysts, the selectivity to diethyl ether was ca 95% or higher up to 210 °C, with catalytic activity in the range of 40–68%. In case of desilicated zeolites, at 270–290 °C, the conversion of ethanol was full with selectivity to ethylene ca 80%. MFI-type commercial zeolite was treated with a sodium and/or tetrabutylammonium hydroxide aqueous solutions (NaOH or NaOH/TBAOH) for 30 min. In the case of the application of ultrasounds, a QSonica Q700 sonicator (60 W and 20 kHz) equipped with a “1” diameter horn was used. In all cases, desilication was performed in an ice bath in order to keep the procedure conditions at low temperature.It was indicated that the use of ultrasounds during desilication procedure caused higher extraction of silicon and aluminum, which was connected with an elevated mesoporosity in relation to the samples modified in the absence of ultrasounds. Ultrasonic-assisted treatment of MFI-type zeolite caused also an apparent formation of numerous holes inside zeolite grains, resembling the look of “swiss cheese”. Furthermore, it was indicated that the samples prepared using ultrasonic irradiation exhibited enhanced catalytic properties in the dehydration of ethanol. For instance, MFI-type zeolite treated with NaOH/TBAOH alkaline mixture containing 10 mol% of TBAOH in the presence of ultrasounds (M−10 s) demonstrated higher both conversion of ethanol (59% vs. 47%) and selectivity to diethyl ether (95% vs. 93%) in comparison with zeolite modified conventionally (M−10c).The best catalyst was zeolite ultrasonically desilicated with NaOH/TBAOH solution of 70 mol% of TBAOH (M-70s). Generally, this catalyst indicated the highest conversion of ethanol, very high selectivity to diethyl ether (94-100%) at 150-210  °C and the highest selectivity to ethylene among investigated catalysts (21%, 66% and 84%) at 230  °C, 250 oC and 270  °C.  相似文献   

12.
为减少汽车尾气排放,应对越来越严格的燃油质量标准,对催化裂化汽油进行选择性加氢脱硫(HDS)是生产低硫汽油的重要技术.提高HDS活性、减少烯烃的饱和是选择性加氧脱硫催化剂研制的关键,而催化剂中活性相状态及其分布将决定催化剂的性能.认识催化剂的活性相状态及其与催化剂性能的关系,有助于研制、开发高性能的HDS催化剂.采用C...  相似文献   

13.
SAPO-34 and ZSM-5 are the most well-known catalyst for MTO reaction. A combination of ZSM-5 and SAPO-34 might give rise to optimal catalyst to meet a change of market demand for ethylene, propylene and butadiene. In this study, we have developed ZSM-5/SAPO-34 composite catalysts to control the composition of light olefins in MTO reaction. ZSM-5/SAPO-34 composite catalysts showed very different physicochemical and catalytic properties with respect to ZSM-5 and SAPO-34 synthetic procedure. The physicochemical properties of the composite catalysts have been compared by XRD, SEM, N2 isotherm, FT-IR and NH3-TPD. Their catalytic performances were also evaluated for MTO reaction. The series composite catalyst synthesized by successive crystallization of SAPO-34 synthetic gel after ZSM-5 crystallization exhibited relatively high catalytic performance.  相似文献   

14.
Gravimetric measurements of thermodesorption of n-hexane and n-heptane were performed under quasi-equilibrium conditions. Differential thermodesorption profiles for ZSM-5 and ZSM-11 showed two peaks, but for Y zeolites, only one thermodesorption peak was observed. A model function, derived from the Langmiur adsorption model, was fitted to the experimental data, and the model parameters (the adsorption entropy and enthalpy) were estimated. The two-step desorption profiles observed for ZSM-5 and ZSM-11 were attributed to the commensurate freezing effect, i.e. a transition in the adsorbed phase resulting in ordering of the adsorbed molecules in the zeolite channels. The results observed for ZSM-11 indicate that the zigzag channels typical for ZSM-5 micropore system are not necessary for this transition to occur.  相似文献   

15.
甲醇合成二甲醚催化剂的制备与催化性能   总被引:1,自引:0,他引:1  
采用沉淀法制备CuO-ZnO-Al2O3/ZSM-5和CuO-ZnO-Al2O3-Cr2O3/ZSM-5两种催化剂,用于甲醇脱水制备二甲醚(DME)。用微反-色谱装置对催化剂进行活性评价,用XRD对催化剂进行结构表征。在本实验条件下,以铜锌氧化物的质量分数之比为1∶1,以及铬的质量百分含量为1%,350℃煅烧的催化剂的活性最高。  相似文献   

16.
应用同步辐射Eextended X-ray Ab sorption Fine S tructure(EXAFS)技术研究固态法制备的KHMoY分子筛的氧化态和硫化态样品以及硫化态KHY/MoO3样品中钼组分的局域配位环境结构,并与KHMoY和KHY/MoO3 样品催化加氢活性结果进行对照。结果表明,随原子比(K+2Mo)/Al的变化,钼原子周围的配位环境有显著的差异。当(K+2Mo)/Al时,KHMoY和KHY/MoO3硫化后,钼组分主要以MoS2小原子簇分散在分子筛超笼中;(K+2Mo)/Al&gt;1时,钼组分则有两种存在环境,即分子筛超笼中的和分子筛外表的钼组分。分子筛超笼中的Mo S2原子簇的催化加氢合成醇选择性较高;分子筛外表面的MoS2微小颗粒的尺寸相对于超笼中的要大许多,其合成醇选择 性较低。  相似文献   

17.
采用液态离子交换法制备了不同含量的Mn/ZSM-5型分子筛催化剂,并考察了上述催化剂的物理化学特性及其在NH3-SCR反应中的催化性能。理化分析结果表明:所制备催化剂在Mn含量≤9.2%时具有高度的分散性,分子筛表面团聚的氧化锰颗粒粒径小于4nm;锰元素主要富集于分子筛的浅层及表面。催化性能研究结果表明:Mn含量达到1...  相似文献   

18.
NaP zeolite nano crystals were synthesized by sonochemical method at room temperature with crystallization time of 3 h. For comparison, to insure the effect of sonochemical method, the hydrothermal method at conventional synthesis condition, with same initial sol composition was studied. NaP zeolites are directly formed by ultrasonic treatment without the application of autogenous pressure and also hydrothermal treatment. The effect of ultrasonic energy and irradiation time showed that with increasing sonication energy, the crystallinity of the powders decreased but phase purity remain unchanged. The synthesized powders were characterized by XRD, IR, DTA TGA, FESEM, and TEM analysis. FESEM images revealed that 50 nm zeolite crystals were formed at room temperature by using sonochemical method. However, agglomerated particles having cactus/cabbage like structure was obtained by sonochemical method followed by hydrothermal treatment. In sonochemical process, formation of cavitation and the collapsing of bubbles produced huge energy which is sufficient for crystallization of zeolite compared to that supplied by hydrothermal process for conventional synthesis. With increasing irradiation energy and time, the crystallinity of the synthesized zeolite samples increased slightly.  相似文献   

19.
以ZSM-5为原料,采用浸渍法将其交换成HZSM-5,以HZSM-5为催化剂,对以冰乙酸和正戊醇为原料合成乙酸戊酯的反应条件进行了研究。研究表明,以1.0m ol/L硫酸浸渍后的ZSM-5催化活性最高,当醇酸摩尔比为1.1∶1,催化剂用量为0.4g,反应时间为90m in,反应温度为125—135℃,酯化率可达82.5%。  相似文献   

20.
《Ultrasonics sonochemistry》2014,21(5):1827-1838
Methanol to olefins process is an interesting route for synthesis of light olefins over nanostructured catalysts. The present research deals with catalyst development by sonochemical method for methanol to olefins reaction with the aim of reaching the most efficient catalyst. The CeSAPO-34 catalyst was prepared via ultrasound assisted hydrothermal method and characterized by XRD, FESEM, PSD, EDX, BET and FTIR techniques. The characteristics and performance of this sample were compared to the catalyst prepared by conventional hydrothermal method. XRD patterns reflected the higher crystallinity of the catalyst synthesized by ultrasound application. In comparison, particles with smaller sizes obtained by applying ultrasonic irradiation. The catalyst obtained using ultrasound had the longer lifetime and sustained desired light olefins at higher values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号