首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
武汉光电国家实验室李鹏程研究组致力于采用高时间和空间分辨的光学成像方法来研究脑功能活动与神经系统疾病的病理机制。为了实时长时程全场高分辨地追踪中风的发生发展过程,该小组在综合了两种传统微小中风模型(皮层微动脉结扎模型与铜环压迫皮层模型)各自优势的基础上,提出了一种改进的微小中风模型,可以实现将缺血灶定位于特定的功能区域(如大鼠中主管胡须感觉的桶状皮层),并且可以很便利地开展血管再通,从而研究缺血再灌注损伤机制与慢性恢复期的功能重组现象。这种模型将中风病灶定位在特定的皮层表面区域,可以最大程度地发挥光学成像的无损与高分辨优势。这项研究对建立研究功能成像生理基础、再灌注损伤以及中风康复机制的新平台有重要意义。  相似文献   

2.
本文探究了西洋参-石菖蒲(X-S)药液对糖尿病认知障碍(DACD)大鼠学习记忆相关脑区的影响.腹腔注射链脲佐菌素(STZ)诱导糖尿病大鼠模型,并将动物分为糖尿病组和X-S组,STZ注射7天后给予X-S药,每日1次,连续113天;于STZ注射80天后采用Morris水迷宫方法筛选DACD和非认知障碍(DNCD)大鼠;120天后运用磁共振成像(MRI)技术扫描大鼠全脑,利用感兴趣区(ROI)法和基于体素形态学(VBM)法对各组大鼠大脑灰质和白质进行体积和密度的分析;并通过苏木精-伊红(HE)染色观察大鼠海马神经元的形态结构.ROI分析法显示:与DACD组相比,X-S组大鼠左侧颞叶联合皮质体积减小(p<0.05);VBM分析法显示:与DACD组相比,X-S组大鼠海马CA1、CA3区及其它脑区的体积和密度或增高或降低(p<0.005).HE染色结果显示:与DACD组相比,X-S组大鼠海马CA1、CA3区的细胞固缩及排列紊乱减轻.结果表明X-S药液对DACD大鼠与学习记忆相关的海马及其它脑区存在双向调节,从而发挥学习记忆能力的改善作用.  相似文献   

3.
黄微  曹子玉 《波谱学杂志》2015,32(3):439-449
1型糖尿病(T1DM)是一种慢性代谢疾病,主要表现为胰岛素分泌量较正常情况下降,会对人体的多个器官和系统造成持续性的损伤.关于糖尿病的横向研究发现糖尿病患者相比于正常人存在着显著的脑萎缩,但关于糖尿病引起的脑萎缩随时间发生进行性改变的研究比较少见.实验采用腹腔注射链脲佐菌素(STZ)来诱导建立大鼠的1型糖尿病模型,运用磁共振成像(MRI)的方法对萎缩的脑区进行定位并在造模后12周和20周两个时间点对脑萎缩的程度进行对比分析,然后运用组织化学染色的方法观察在MRI上出现进行性萎缩的脑区中的神经元所发生的病理改变.MRI的结果表明:STZ诱导的T1DM大鼠相比于正常对照组大鼠出现了显著性的全脑体积、灰质体积和白质体积的萎缩,并且在多个白质脑区和灰质脑区均出现了萎缩程度随着病程的延长而逐渐加重.组织化学染色的结果发现,STZ诱导的T1DM大鼠相对于正常对照组大鼠在体感皮层、运动皮层和海马CA3区,均出现明显的神经元萎缩现象.  相似文献   

4.
本文针对目前脑功能分区不够准确的问题,基于静息态功能磁共振数据,提出了一种融合t-分布随机邻域嵌入(t-SNE)与自动谱聚类(ASC)的人脑功能精细分区的算法.首先,基于静息态功能磁共振图像,对需功能划分的脑区与全脑的时间序列作相关分析,得到需划分脑区的功能连接模式;然后,利用t-SNE算法提取高维功能连接模式特征;最后,通过基于本征间隙的ASC算法自动确定聚类数目,并对降维后的脑区特征分类,得到精细划分的脑亚区.模拟种子区域上的实验结果表明,相较谱聚类算法,以及结合主成分分析的谱聚类算法,本文方法对脑功能体素划分更优.进一步将本方法应用到真实人脑的功能分区中,成功地将海马旁回分为左右半球各3个亚区.本研究表明使用t-SNE与ASC融合的算法可提高脑功能分区准确性,是脑功能精细分区、进而构建脑功能图谱的一种有效方法.  相似文献   

5.
为搭建可用于磁共振环境下的自动控制嗅觉刺激器,本文根据刺激装置搭建的通用要求和实验室已有装置的性能提出了改进需求和系统整体设计方案.刺激装置分为控制系统与气体输送系统两部分.控制系统的软件部分基于LabVIEW平台编程,采用了虚拟仪器方案,提供可输入刺激序列的人机界面,并根据不同的刺激需求来控制电磁阀动作,以切换不同气路.气体输送系统由4条可变支路和1条恒流支路组成,其中的3条可变气路由洁净空气分别通过装有不同气味液体的洗气瓶来产生3种刺激气味.系统搭建完成后,使用霍尼韦尔AWM43600空气流量传感器测量了系统气体流量波动率为0.3%,同时测得不同刺激气路切换时的切换响应时间为1.07 s.最后使用该刺激装置对8名被试进行嗅觉刺激的同时进行功能磁共振成像(fMRI)实验,实验采用了乙醇、吡啶和乙酸异戊酯3种刺激气味,fMRI图像结果显示被试的嗅觉受到刺激后,丘脑、杏仁核、梨状皮质、眶额皮层等嗅觉相关脑区激活.以上实验表明,本文搭建的指标可量化的刺激器更能满足嗅觉fMRI实验的要求.  相似文献   

6.
躯体症状障碍(somatic symptom disorder,SSD)是一种常见的医学疾病,致病原因涉及生物学、心理学及社会因素.目前关于SSD的神经机制知之甚少.本研究通过静息态功能磁共振成像(functional magnetic resonance imaging,fMRI),结合低频振幅(amplitudes of low-frequency fluctuation,ALFF)和局部一致性(regional homogeneity,ReHo)分析探究45位SSD患者和43位健康对照自发性脑活动特征的区别.结果发现:与对照组相比,SSD患者右侧扣带回中部的ReHo值显著升高,而右侧楔前叶、左侧颞下回延伸到左侧颞中回和左侧海马旁回、右侧脑桥的ReHo值显著降低.同时,SSD患者扣带回中部延伸至左侧额中回、右侧脑岛延伸至右侧额下回、左侧额中回延伸至左侧前扣带回的ALFF值均显著升高.这些脑区的脑功能与自我加工、情绪处理、身体知觉等有关,与SSD发病机制有重要联系.  相似文献   

7.
本文旨在利用磁共振成像手段探究尼古丁易感个体的脑结构特征,即脑结构特性对尼古丁依赖程度的预测.选用成年雄性SD大鼠进行纵向研究,利用基于微型渗透压泵的间歇性给药方式对大鼠进行腹腔注射尼古丁14天,随后强制戒断14天.于第0、15、29天进行躯体戒断行为测试以量化其尼古丁依赖严重程度.对第1天的脑结构图像与戒断行为评分进行回归分析,结果发现尼古丁依赖严重程度与双侧前边缘皮层、左侧颗粒状岛叶皮层灰质体积和双侧丘脑白质体积呈负相关,与右侧海马CA1脑区和左侧丘脑灰质体积呈正相关.以上脑区的结构特征,能够作为尼古丁易感的生物标志物,在个体接触尼古丁之前预测其尼古丁依赖风险,对易感人群进行有针对性的早期干预.  相似文献   

8.
李婷  李黎  杜鹏  骆清铭  龚辉 《光学学报》2007,27(3):531-535
近红外脑功能成像技术(fNIRI)是近年来发展起来的新技术,与心理学研究常用的事件相关脑电位检测技术(ERP)相比,能提供电生理信号之外的与脑功能活动相关的血液动力学信息。设计了非随意注意的经典范式,对同一组被试者分别使用近红外脑功能成像技术和事件相关脑电位检测技术检测其在实验过程中脑活动变化,然后对两种技术检测的结果进行处理和比较分析。结果发现近红外脑功能成像技术测出的非随意注意源定位在前额叶,与其相关P3a脑电皮层分布一致,甚至近红外脑功能成像技术测出的源定位范围可以缩小到Brodmann46区;血液激活先于P3a并在P3a完成后显著增强的现象支持深入研究脑机理的可能性。因此,近红外脑功能成像技术可有效地应用于脑的高级功能研究。  相似文献   

9.
大脑具有自适应、自组织、多稳态等重要特征,是典型的复杂系统.人脑在静息态下的关键功能子网络--默认模式网络(DMN)的激活处于多状态间持续跳转的非平衡过程,揭示该过程背后的动力学机制具有重要的科学意义和临床应用前景.本文基于功能磁共振获得的血氧水平依赖(BOLD)信号,建立了DMN吸引子跳转非平衡过程的能量图景、吸引子非联通图、跳转关系网络等;以高级视觉皮层和听觉等皮层活动为例,通过对应激活DMN状态空间的分布,以及XGBoost、深度神经网络等算法验证了DMN状态变化与外部脑区状态的密切依赖关系;通过偏相关、收敛交叉映射等方法分析了DMN内各个脑区之间的相互作用.本文结果有助于理解静息态下大脑内在非平衡过程的动力学机制,以及从动力学的角度探索具有临床意义的脑功能障碍生物标志物.  相似文献   

10.
慢性电刺激海马结构诱发大鼠脑磁共振成像异常信号分析   总被引:2,自引:0,他引:2  
为探讨海马结构(hippocampal formation)功能失衡与癫痫源性脑损伤的关系,本工作采用 慢性强直电刺激大鼠海马(hippocampus, HPC) CA1顶树突区(apical dendrite region, A DR)或齿状回(dentate gyrus, DG)诱发大鼠癫痫模型,一天一次,连续刺激6~8天后, 观察人工致痫灶以外的横向弛豫时间加权的核磁共振(T2 weighted magnetic reson ance im age, T2-WI) 绝对信号值变化(片厚1mm),以及深部电图和原发性湿狗颤抖(pri mary wet dog shakes, WEDS),并对被检测动物T2-WI信号异常的相应脑区进行组织学鉴定. 结果表明:(1)电 刺激大 鼠ADR或DG的作用基本相似,引起深部电图的癫痫样电活动和侧脑室区域T2值增强.(2)含有电极尖端痕迹的核磁共振(magnetic resonance image,MRI)脑切片出现对称性腹部侧脑室区域T2值增强,连续向后1mm取MRI脑切片进行观察发现,对侧腹部侧脑室区域信号异常. (3)组织学切片观察到:MRI检测的侧脑室区域T2-WI信号增强与组织切片的侧脑室扩大相吻合,可见扩大的侧脑室中脉络丛上皮细胞病理性增生现象. 提示:在大鼠癫痫点燃现象出现之前,过度激活DG或ADR均可引起相似的早期癫痫源性脑损伤.  相似文献   

11.
Manganese enhanced MRI (MEMRI) is an emerging technique for tracing neuronal pathways in vivo. However, manganese may leak into blood vessels or cerebrospinal fluid (CSF) after local injection and can be circulated to and taken up by brain regions that may not have connections to the targeted pathways. Comparing enhancement time courses after intranasal injection with intravenous infusion of MnCl2 in rats, the early enhancements in the pituitary gland (Pit) and hippocampus indicate the contrasts in those regions in the olfactory tract-tracing experiment were caused by such systemic effects. Since the Pit has easy access to manganese from the blood and its signal is proportional to other brain regions after intravenous infusion, it was used as an internal reference for the systemic effects. Applying intensity normalization by the Pit signal to tract-tracing data from the olfactory bulb led to reduced contrast in the hippocampus. These results demonstrate that nonspecific enhancements in MEMRI tract-tracing studies may have to be taken into account and that normalization by the Pit signal can compensate these effects.  相似文献   

12.
Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for visualizing neuronal pathways and mapping brain activity modulation. A potential drawback of MEMRI lies in the toxic effects of manganese (Mn), which also depend on its administration route. The aim of this study was to analyze the effects of Mn doses injected into the nostrils of rats on both olfactory perception and MRI contrast enhancement. For this purpose, doses in the range 0-8 μmol MnCl2 were tested. Behavioral items were quantified with and without odor stimulation during the first 2 h following Mn injection. The MRI study was performed after 16 h of intermittent olfactory stimulations. Behavioral results showed that, during the early period following Mn administration, spontaneous motor activity was not affected, while odor-related behaviors were dose-dependently reduced. MRI results showed that, in the primary olfactory cortex, contrast was rapidly enhanced for Mn doses up to 0.3 μmol and very slowly above. This dose of 0.3 μmol Mn can thus be taken as the optimal dose for injection into rat nostrils to ensure a reproducible contrast in MRI studies while sparing olfactory perception.  相似文献   

13.
Manganese (Mn)-enhanced magnetic resonance imaging (MEMRI) is an emerging technique for visualizing neuronal pathways and mapping brain activity modulation in animal models. Spatial and intensity normalizations of MEMRI images acquired from different subjects are crucial steps as they can influence the results of groupwise analysis. However, no commonly accepted procedure has yet emerged. Here, a normalization method is proposed that performs both spatial and intensity normalizations in a single iterative process without the arbitrary choice of a reference image. Spatial and intensity normalizations benefit from this iterative process. On one hand, spatial normalization increases the accuracy of region of interest (ROI) positioning for intensity normalization. On the other hand, improving the intensity normalization of the different MEMRI images leads to a better-averaged target on which the images are spatially registered. After automatic fast brain segmentation and optimization of the normalization process, this algorithm revealed the presence of Mn up to the posterior entorhinal cortex in a tract-tracing experiment on rat olfactory pathways. Quantitative comparison of registration algorithms showed that a rigid model with anisotropic scaling is the best deformation model for intersubject registration of three-dimensional MEMRI images. Furthermore, intensity normalization errors may occur if the ROI chosen for intensity normalization intersects regions where Mn concentration differs between experimental groups. Our study suggests that cross-comparing Mn-injected animals against a Mn-free group may provide a control to avoid bias introduced by intensity normalization quality. It is essential to optimize spatial and intensity normalization as the detectability of local between-group variations in Mn concentration is directly tied to normalization quality.  相似文献   

14.
Manganese-enhanced magnetic resonance imaging (MEMRI) has been widely applied to trace neuronal tracts and to monitor morphological and functional responses of specific brain circuits to changes in physiological and/or environmental conditions. In this study, we traced the efferent axonal projections from ventral tegmental area (VTA) to forebrain structures, an integrating part of the reward circuit implicated in drug addiction, in rats using MEMRI. Urethane- and chloral hydrate-anesthetized rats received injection of 100 nl of 200 mM MnCl(2) solution into the right VTA. Mn(2+)-induced signal enhancements were monitored 24 h after injection. The dose of MnCl(2) injection was shown, by histological evaluation, to have minor toxic effects to the neurons in/near the injection site. Dynamic Mn(2+)-induced signal intensity changes in urethane-anesthetized rats during a 24-h period were fit to a sigmoidal function to obtain parameters slope and t(50), which describe the dynamics of apparent Mn(2+)accumulation. The results showed that most of the forebrain structures known to receive neuronal projections from the VTA, including prefrontal cortex, nucleus accumbens, globus pallidus and caudate putaman, were enhanced at 24 h after injection of MnCl(2) into the ipsilateral VTA, and anesthesia seemed have little effects on the amount of Mn(2+)being transported from the VTA to these structures.  相似文献   

15.
Objectives: This study aimed to investigate anatomical changes in the brain following chronic complete traumatic thoracic spinal cord injury (ThSCI) using voxel-based morphometry (VBM). That is, it attempted to examine dynamic physical change following thoracic injury and the presence or absence of regions with decreased and increased changes in whole brain volume associated with change in the manner of how activities of daily living are performed. Methods: Twelve individuals with chronic traumatic complete ThSCI (age; 21-63 years, American Spinal Injury Association Impairment Scale; grade C-D) participated in this study. VBM was used to investigate the regions with increased volume and decreased volume in the brain in comparison with healthy control individuals. Results: Decreases in volume were noted in areas associated with motor and somatosensory functions, including the right paracentral lobule (PCL)―the primary motor sensory area for lower limbs, left dorsal premotor cortex, and left superior parietal lobule (SPL). Furthermore, increased gray matter volume was noted in the primary sensorimotor area for fingers and arms, as well as in higher sensory areas. Conclusions: Following SCI both regions with increased volume and regions with decreased volume were present in the brain in accordance with changes in physical function. Using longitudinal observation, anatomical changes in the brain may be used to determine the rehabilitation effect by comparing present cases with cases with cervical SCI or cases with incomplete palsy.  相似文献   

16.
We examined whether cerebral activation due to secondary hyperalgesia resulting from intrajoint capsaicin injection could be detected using functional magnetic resonance imaging (fMRI) in alpha-chloralose anesthetized rats. We also examined whether we could detect analgesic changes in the central nervous system response to pain as a result of physiotherapy joint manipulation. Robust activation of areas of the brain known to be associated with the processing of pain, namely the anterior cingulate (bilateral), frontal cortex (bilateral) and sensory motor cortex (contralateral), was found in all animals following injection of 25 microl of capsaicin (128 microg/ml in 7.5% DMSO) into the plantar surface of the rat hindpaw (n = 7) and 75 microL into the ankle joint (n = 13). Significantly greater activation was observed when capsaicin was injected into the plantar surface of the hindpaw compared to the ankle joint. Mechanical allodynia and secondary hyperalgesia following capsaicin injection into the ankle joint also resulted in activation of the same brain regions. Trends toward decreased areas of activation in brain regions associated with pain in animals following physiotherapy joint mobilization were observed.  相似文献   

17.
Kay LM 《Chaos (Woodbury, N.Y.)》2003,13(3):1057-1066
Brain hermeneutics and chaotic itinerancy proposed by Tsuda are attractive characterizations of perceptual dynamics in the mammalian olfactory system. This theory proposes that perception occurs at the interface between itinerant neural representation and interaction with the environment. Quantifiable application of these dynamics has been hampered by the lack of definable history and action processes which characterize the changes induced by behavioral state, attention, and learning. Local field potentials measured from several brain areas were used to characterize dynamic activity patterns for their use as representations of history and action processes. The signals were recorded from olfactory areas (olfactory bulb, OB, and pyriform cortex) and hippocampal areas (entorhinal cortex and dentate gyrus, DG) in the brains of rats. During odor-guided behavior the system shows dynamics at three temporal scales. Short time-scale changes are system-wide and can occur in the space of a single sniff. They are predictable, associated with learned shifts in behavioral state and occur periodically on the scale of the intertrial interval. These changes occupy the theta (2-12 Hz), beta (15-30 Hz), and gamma (40-100 Hz) frequency bands within and between all areas. Medium time-scale changes occur relatively unpredictably, manifesting in these data as alterations in connection strength between the OB and DG. These changes are strongly correlated with performance in associated trial blocks (5-10 min) and may be due to fluctuations in attention, mood, or amount of reward received. Long time-scale changes are likely related to learning or decline due to aging or disease. These may be modeled as slow monotonic processes that occur within or across days or even weeks or years. The folding of different time scales is proposed as a mechanism for chaotic itinerancy, represented by dynamic processes instead of static connection strengths. Thus, the individual maintains continuity of experience within the stability of fast periodic and slow monotonic processes, while medium scale events alter experience and performance dramatically but temporarily. These processes together with as yet to be determined action effects from motor system feedback are proposed as an instantiation of brain hermeneutics and chaotic itinerancy.  相似文献   

18.
Manganese (Mn) complexes are unstable and dissociate in vivo. Because of the release of this metal, there exists some concern about the potential long-term neurotoxicity associated with the use of Mn-based contrast agents. This latter problem arises because manganese is known to accumulate in specific regions of the brain of people intoxicated by this metal. It was previously demonstrated that Mn can accumulate in the mice brain after administration of 5 μmol/kg of MnCl2, Mn-diethylenetriaminepentaacetate (Mn-DTPA), or Mn-dipyridoxal diphosphate (Mn-DPDP). In order to better characterize the behavior of Mn complexes after administration, this study assesses the regional distribution of Mn in the brain after i.v. injection of a single dose of MnCl2 or Mn-DTPA. Male Wistar rats received an i.v. injection of 5 μmol/kg of 54Mn as MnCl2 or Mn-DTPA. The rats were killed at one and two weeks post exposure. The distribution of the radioactivity in the slices was monitored by autoradiography. For both MnCl2 or Mn-DTPA, we observed that the radioactivity was dispersed in the entire brain, but the radioactivity was higher in several regions. No difference was observed between MnCl2 or Mn-DTPA in the regional distribution of Mn, and no difference was observed between the two times of exposure (1 week or 2 weeks). The uptake of Mn was minimal in corpus callosum. Maximal Mn concentration was observed in the hippocampal region, thalamus, colliculi, amygdala, olfactory nuclei, and cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号