首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider a continuous time random walk X in a random environment on ?+ such that its potential can be approximated by the function V:?+→? given by $V(x)=\sigma W(x) -\frac {b}{1-\alpha}x^{1-\alpha}$ where σW a Brownian motion with diffusion coefficient σ>0 and parameters b, α are such that b>0 and 0<α<1/2. We show that P-a.s. (where P is the averaged law) $\lim_{t\to\infty} \frac{X_{t}}{(C^{*}(\ln\ln t)^{-1}\ln t)^{\frac{1}{\alpha}}}=1$ with $C^{*}=\frac{2\alpha b}{\sigma^{2}(1-2\alpha)}$ . In fact, we prove that by showing that there is a trap located around $(C^{*}(\ln\ln t)^{-1}\ln t)^{\frac{1}{\alpha}}$ (with corrections of smaller order) where the particle typically stays up to time t. This is in sharp contrast to what happens in the “pure” Sinai’s regime, where the location of this trap is random on the scale ln2 t.  相似文献   

2.
Let $\mathcal {A}_{2}(t)$ be the Airy2 process. We show that the random variable $$\sup_{t\leq\alpha} \bigl\{\mathcal {A}_2(t)-t^2 \bigr\}+\min\{0,\alpha \}^2 $$ has the same distribution as the one-point marginal of the Airy2→1 process at time α. These marginals form a family of distributions crossing over from the GUE Tracy-Widom distribution F GUE(x) for the Gaussian Unitary Ensemble of random matrices, to a rescaled version of the GOE Tracy-Widom distribution F GOE(41/3 x) for the Gaussian Orthogonal Ensemble. Furthermore, we show that for every α the distribution has the same right tail decay $e^{-\frac{4}{3} x^{3/2} }$ .  相似文献   

3.
We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by $$H = - J\sum\limits_{\left\langle {x,y} \right\rangle } {\sigma _3 (x)\sigma _3 (y) - \sum\limits_x {h(x)\sigma _1 (x)} } $$ whereJ>0,x,y∈Z d, σ1, σ3 are the usual Pauli spin 1/2 matrices, andh={h(x),x∈Z d} are independent identically distributed random variables. We consider the ground state correlation function 〈σ3(x3(y)〉 and prove:
  1. Letd be arbitrary. For anym>0 andJ sufficiently small we have, for almost every choice of the random transverse fieldh and everyxZ d, that $$\left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle \leqq C_{x,h} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x h <∞.
  2. Letd≧2. IfJ is sufficiently large, then, for almost every choice of the random transverse fieldh, the model exhibits long range order, i.e., $$\mathop {\overline {\lim } }\limits_{\left| y \right| \to \infty } \left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle > 0$$ for anyxZ d.
  相似文献   

4.
For the Schrödinger map equation \({u_t = u \times \triangle u \, {\rm in} \, \mathbb{R}^{2+1}}\) , with values in S 2, we prove for any \({\nu > 1}\) the existence of equivariant finite time blow up solutions of the form \({u(x, t) = \phi(\lambda(t) x) + \zeta(x, t)}\) , where \({\phi}\) is a lowest energy steady state, \({\lambda(t) = t^{-1/2-\nu}}\) and \({\zeta(t)}\) is arbitrary small in \({\dot H^1 \cap \dot H^2}\) .  相似文献   

5.
We consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice ${h\mathbb{Z}}$ with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on ${\mathbb{R}}$ with the fractional Laplacian (?Δ) α as dispersive symbol. In particular, we obtain that fractional powers ${\frac{1}{2} < \alpha < 1}$ arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian ?Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions). Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions.  相似文献   

6.
The average of the moments for event shapes in e ?+? e??→hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\langle {1-T}\rangle$ , $\langle \rho\rangle$ , $\langle {B_{\rm T}}\rangle$ and $\langle {B_{\rm W} }\rangle$ . We extract α s, the coupling constant in perturbative theory and α 0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $\alpha_{\rm s} ({M_{\rm Z^0} })=0.1171\pm 0.00229$ and $\alpha_0 \left( {\mu_{\rm I} =2\,{\rm GeV}} \right)=0.5068\pm 0.0440$ are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.  相似文献   

7.
We consider the nonlinear elliptic degenerate equation (1) $$ - x^2 \left( {\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }}} \right) + 2u = f(u)in\Omega _a ,$$ where $$\Omega _a = \left\{ {(x,y) \in \mathbb{R}^2 ,0< x< a,\left| y \right|< a} \right\}$$ for some constanta>0 andf is aC functions on ? such thatf(0)=f′(0)=0. Our main result asserts that: ifuC \((\bar \Omega _a )\) satisfies (2) $$u(0,y) = 0for\left| y \right|< a,$$ thenx ?2 u(x,y)∈C \(\left( {\bar \Omega _{a/2} } \right)\) and in particularuC \(\left( {\bar \Omega _{a/2} } \right)\) .  相似文献   

8.
We have investigated theoretically a feasible nuclear reaction to produce light double-Λ hypernuclei by choosing a suitable target. In the reaction from stopped Ξ ? on 6Li target light doubly-strange nuclei, ${^5_{\Lambda\Lambda}{\rm H}}$ and ${^6_{\Lambda\Lambda}{\rm He}}$ , are produced: we have calculated the formation ratio of ${^5_{\Lambda\Lambda}{\rm H}}$ to ${^6_{\Lambda\Lambda}{\rm He}}$ for Ξ ? absorptions from 2S, 2P and 3D orbitals of Ξ ?6Li atom by assuming a d?α cluster model for 6Li. From this cluster model the d?α relative wave functions has a node due to Pauli exclusion among nucleons belonging to d and α clusters. Two kinds of d?α wave functions, namely 1s relative wave function with a phenomenological one-range Gaussian (ORG) potential and that of an orthogonality-condition model (OCM) are used. It is found that the probability of ${^5_{\Lambda\Lambda}{\rm H}}$ formation is larger than that of ${^6_{\Lambda\Lambda}{\rm He}}$ for all absorption orbitals: in the case of the major 3D absorption their ratio is 1.08 for ORG and 1.96 for OCM. The dominant low momentum component of the d?α relative wave function favors the ${^5_{\Lambda\Lambda}{\rm H}}$ formation with a low Q value compared to the ${^6_{\Lambda\Lambda}{\rm He}}$ formation with a high Q value. We have also calculated momentum distributions of emitted particles, d and n, displaying continuum spectra for single-Λ hypernuclei, ${^4_{\Lambda}{\rm H}}$ and ${^5_{\Lambda}{\rm He}}$ , and line spectra for the ${^5_{\Lambda\Lambda}{\rm H}}$ and ${^6_{\Lambda\Lambda}{\rm He}}$ nuclei. Thus, our present theoretical analysis would be a significant contribution to experiments in the strangeness ?2 sector of hypernuclear physics.  相似文献   

9.
The determination of the polarization of6Li-ions is discussed. It is shown, that independent of the reaction mechanism the following relations between the analysing powers for polarized deuterons and polarized6Li-ions hold for the6Li(d, α)4He-reaction: for all scattering angles \(\vartheta : A_{y y}^{(d)} (E, \vartheta ) = A_{y y}^{(Li)} (E, \vartheta )\) for the scattering angle \(\vartheta = \pi /2\) only: $$A_{z z}^{(d)} (E, \vartheta = \pi /2) = A_{z z}^{(Li)} (E, \vartheta = \pi /2)$$ and $$A_{x x - y y}^{(d)} (E, \vartheta = \pi /2) = A_{x x - y y}^{(Li)} (E, \vartheta = \pi /2)$$ . Using these identities the determination of the polarization of6Li-beams is reduced to the experimentally well established determination of the polarization of deuterons.  相似文献   

10.
In the present paper, we study the following scaled nonlinear Schrödinger equation (NLS) in one space dimension: $$ i\frac{\rm d}{{\rm d}t}\psi^{\varepsilon}(t)=-\Delta\psi^{\varepsilon}(t) +\frac{1}{\varepsilon}V\left(\frac{x}{\varepsilon} \right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t)\quad \varepsilon > 0\,\quad V\in L^1(\mathbb{R},(1+|x|){\rm d}x) \cap L^\infty(\mathbb{R}).$$ This equation represents a nonlinear Schrödinger equation with a spatially concentrated nonlinearity. We show that in the limit \({\varepsilon\to 0}\) the weak (integral) dynamics converges in \({H^1(\mathbb{R})}\) to the weak dynamics of the NLS with point-concentrated nonlinearity: $$ i\frac{{\rm d}}{{\rm d}t} \psi(t) =H_{\alpha} \psi(t) .$$ where H α is the Laplacian with the nonlinear boundary condition at the origin \({\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0)}\) and \({\alpha=\int_{\mathbb{R}}V{\rm d}x}\) . The convergence occurs for every \({\mu\in \mathbb{R}^+}\) if V ≥  0 and for every  \({\mu\in (0,1)}\) otherwise. The same result holds true for a nonlinearity with an arbitrary number N of concentration points.  相似文献   

11.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

12.
I. I. Guseinov 《Few-Body Systems》2013,54(11):1773-1780
By the use of complete orthonormal sets of ${\psi ^{(\alpha^{\ast})}}$ -exponential type orbitals ( ${\psi ^{(\alpha^{\ast})}}$ -ETOs) with integer (for α * = α) and noninteger self-frictional quantum number α *(for α * ≠ α) in standard convention introduced by the author, the one-range addition theorems for ${\chi }$ -noninteger n Slater type orbitals ${(\chi}$ -NISTOs) are established. These orbitals are defined as follows $$\begin{array}{ll}\psi _{nlm}^{(\alpha^*)} (\zeta ,\vec {r}) = \frac{(2\zeta )^{3/2}}{\Gamma (p_l ^* + 1)} \left[{\frac{\Gamma (q_l ^* + )}{(2n)^{\alpha ^*}(n - l - 1)!}} \right]^{1/2}e^{-\frac{x}{2}}x^{l}_1 F_1 ({-[ {n - l - 1}]; p_l ^* + 1; x})S_{lm} (\theta ,\varphi )\\ \chi _{n^*lm} (\zeta ,\vec {r}) = (2\zeta )^{3/2}\left[ {\Gamma(2n^* + 1)}\right]^{{-1}/2}x^{n^*-1}e^{-\frac{x}{2}}S_{lm}(\theta ,\varphi ),\end{array}$$ where ${x=2\zeta r, 0<\zeta <\infty , p_l ^{\ast}=2l+2-\alpha ^{\ast}, q_l ^{\ast}=n+l+1-\alpha ^{\ast}, -\infty <\alpha ^{\ast} <3 , -\infty <\alpha \leq 2,_1 F_1 }$ is the confluent hypergeometric function and ${S_{lm} (\theta ,\varphi )}$ are the complex or real spherical harmonics. The origin of the ${\psi ^{(\alpha ^{\ast})} }$ -ETOs, therefore, of the one-range addition theorems obtained in this work for ${\chi}$ -NISTOs is the self-frictional potential of the field produced by the particle itself. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids when Hartree–Fock–Roothan approximation is employed.  相似文献   

13.
A search for double- $ \beta$ processes in 190Pt and 198Pt was realized with the help of ultra-low background HP Ge 468cm^3 $ \gamma$ spectrometer in the underground Gran Sasso National Laboratories of the INFN (Italy). After 1815 h of data taking with 42.5g platinum sample, T 1/2 limits on 2 $ \beta$ processes in 190Pt ( $ \varepsilon$ $ \beta^{+}_{}$ and 2 $ \varepsilon$ have been established on the level of 1014-1016y, 3 to 4 orders of magnitude higher than those known previously. In particular, a possible resonant double-electron capture in 190Pt was restricted on the level of 2.9×1016 y at 90% C.L. In addition, T 1/2 limit on 2 $ \beta^{-}_{}$ decay of 198Pt (2 $ \nu$ +0 $ \nu$ ) to the 2+ 1 excited level of 198Hg has been set at the first time: T 1/2 > 3.5×1018 y. The radiopurity level of the used platinum sample is reported.  相似文献   

14.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

15.
In this paper we prove that the one dimensional Schrödinger operator onl 2(?) with potential given by: $$\upsilon (n) = \lambda \chi _{[1 - \alpha , 1[} (x + n\alpha )\alpha \notin \mathbb{Q}$$ has a Cantor spectrum of zero Lebesgue measure for any irrationalα and any λ>0. We can thus extend the Kotani result on the absence of absolutely continuous spectrum for this model, to all .  相似文献   

16.
A detailed $ \gamma$ spectroscopic decay study of two K isomers in 254No was performed. In addition to the previously reported $ \gamma$ lines two new transitions of E = 778 , 856keV could be attributed to the decay pattern of 254m1No ( T 1/2 = 275±7 ms). The population of an excited band built up on this isomer ( $\ensuremath K^{\pi} =8^{-}$ by the decay of 254m2No ( T 1/2 = 198±13 μs) could be proven by measuring delayed $ \gamma$ - $ \gamma$ coincidences between transitions stemming from the decay of both isomeric states. The energies of the band members could be established up to $\ensuremath I^{\pi} = 15^{-}$ . A spontaneous fission branch of (2.0±1.2)×10-4 was measured for 254m1No , an upper limit of $ \le$ 1.2×10-4 was estimated for 254m2No . These values demonstrate the high stability of multi-quasiparticle configurations against spontaneous fission. Evidence for an $ \alpha$ decay branch of 254m1No in the order of 1×10-4 was found.  相似文献   

17.
We consider the exclusive \(p - \bar p\) decays of the quarkoniumP-states. Due to the helicity conservation of massless QCD the \(p - \bar p\) mode is forbidden in this limit for the1 P 1 and the3 P 0 states. The angular distributions for the decays of the remaining states in the cascade \(^3 S\prime _1 \to \gamma ^3 P_J \to \gamma p\bar p\) are specific to QCD and can serve as a test of the theory. The same is true of the formation process \(p\bar p \to ^3 P_J \to ^3 S_1 \gamma \) . In lowest order QCD we obtain overall branching ratios for charmonium of the order of 10?4.  相似文献   

18.
19.
In this paper we prove the existence and multiplicity of (weak) solutions for the following fractional boundary value problem: where $\alpha \in (\tfrac{1} {2},1]$ , 0 D t α?1 and t D T α?1 are the left and right Riemann-Liouville fractional integrals of order 1 ? α respectively, λ,μ ∈ [0,+∞), T > 0, F,GC([0,T] × R N ;R)\{0} and A = (a ij (t)) N×N is symmetric. Our approach is based on variational methods.  相似文献   

20.
Bounds are obtained on the unintegrated density of states ρ(E) of random Schrödinger operatorsH=?Δ + V acting onL 2(? d ) orl 2(? d ). In both cases the random potential is $$V: = \sum\limits_{y \in \mathbb{Z}^d } {V_y \chi (\Lambda (y))}$$ in which the \(\left\{ {V_y } \right\}_{y \in \mathbb{Z}^d }\) areIID random variables with densityf. The χ denotes indicator function, and in the continuum case the \(\left\{ {\Lambda (y)} \right\}_{y \in \mathbb{Z}^d }\) are cells of unit dimensions centered ony∈? d . In the finite-difference case Λ(y) denotes the sitey∈? d itself. Under the assumptionf ∈ L 0 1+? (?) it is proven that in the finitedifference casep ∈ L (?), and that in thed= 1 continuum casep ∈ L loc (?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号