首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Keller box method (“Numerical Solutions of Partial Differential Equations, Vol. 2” (B. Hubbard Ed.), pp. 327–350, Academic Press, New York, 1970) was applied to incompressible flow past a flat plate to demonstrate that the basic computation region must extend outward from the wall until the outer boundary conditions are effectively obtained. The Keller box method was modified to include an asymptotic outer solution for the case of the self-similar solution for compressible flow in a boundary layer. Initial application of the basic and modified Keller box methods to incompressible flow past a flat plate showed similar rates of convergence but smaller RMS error for the same basic range of the independent variable when the asymptotic outer solution is applied. Furthermore, extension of the solution beyond the range of the independent variable for the numerical solution using the resulting asymptotic solution produced RMS error at least as small as the RMS error on the range of the numerical solution. Also, when the asymptotic solution was applied, a smaller range of independent variables could be used in the numerical solution to obtain the same RMS error. Numerical results for compressible flow were qualitatively the same as for the case with the incompressible velocity profile except the rate of iterative convergence was slightly slower. Application of asymptotic outer solution for incompressible flow at a two dimensional stagnation point produced similar results with smaller relative improvements. For compressible flow with smaller favorable pressure gradients than the stagnation point and with adverse pressure gradients, significant improvements were again obtained. Examination of the errors associated with the asymptotic solution reveals that greatest success is obtained for flows with thicker boundary layers and shows that the boundary layer at a two dimensional stagnation point is too thin for small error in the asymptotic solution. Despite relatively large errors in the asymptotic solutions for boundary layer in strong favorable pressure gradients where the boundary layer is thin, the boundary layer solutions generally showed improvement in error and reduction in computation times.  相似文献   

2.
We use direct numerical simulation (DNS) based on spectral methods and the parallel codeNekTar to simulate incompressible and compressible flow past flexible structures. Specifically, we consider incompressible turbulent flow past flexible cylinders subject to vortex-induced vibrations (VIV), and compressible flow past a three-dimensional flexible wing subject to insect-like motion. We present several shedding patterns that reveal new oblique shedding modes resembling modulated traveling and standing wave response waves for flexible cylinders as well as strong three-dimensional interactions for flexible wings.  相似文献   

3.
In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed.  相似文献   

4.
A simple and efficient time-dependent method is presented for solving the steady compressible Euler and Navier–Stokes equations with third-order accuracy. Owing to its residual-based structure, the numerical scheme is compact without requiring any linear algebra, and it uses a simple numerical dissipation built on the residual. The method contains no tuning parameter. Accuracy and efficiency are demonstrated for 2-D inviscid and viscous model problems. Navier–Stokes calculations are presented for a shock/boundary layer interaction, a separated laminar flow, and a transonic turbulent flow over an airfoil.  相似文献   

5.
We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier–Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier–Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton’s method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L2 least-squares functional and L2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier–Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation.  相似文献   

6.
In a previous paper we have developed a staggered compact finite difference method for the compressible Navier–Stokes equations. In this paper we will extend this method to the case of incompressible Navier–Stokes equations. In an incompressible flow conservation of mass is ensured by the well known pressure correction method  and . The advection and diffusion terms are discretized with 6th order spatial accuracy. The discrete Poisson equation, which has to be solved in the pressure correction step, has the same spatial accuracy as the advection and diffusion operators. The equations are integrated in time with a third order Adams–Bashforth method. Results are presented for a 1D advection–diffusion equation, a 2D lid driven cavity at a Reynolds number of 1000 and 10,000 and finally a 3D fully developed turbulent duct flow at a bulk Reynolds number of 5400. In all cases the methods show excellent agreement with analytical and other numerical and experimental work.  相似文献   

7.
Algebraic Reynolds stress model (ARSM) is often employed in practical turbulent flow simulations. Most of previous works on ARSM have been carried out for incompressible flows. In the present paper, a new ARSM model is suggested for compressible flows. The model adopts a compressibility factor function involving the turbulent Mach number and the gradient Mach number. Compared to incompressible flow, explicit solution for ARSM for compressible flow can hardly be obtained due to dilatation terms. We propose approximate representations for these dilatation-related terms to obtain an explicit procedure for compressible flow turbulence. The model is applied to compressible mixing layer, supersonic flat-plate boundary and planar supersonic wake flow. It is found that the model works very well yielding results that are in good agreement with the DNS and the experimental data.  相似文献   

8.
Pressure-based flow solvers couple continuity and linearized truncated momentum equations to derive a Poisson type pressure correction equation and use the well known SIMPLE algorithm. Momentum equations and the pressure correction equation are typically solved sequentially. In many cases this method results in slow and often difficult convergence. The current paper proposes a novel computational algorithm, solving for pressure and velocity simultaneously within a pressure-correction coupled solution approach using finite volume method on structured and unstructured meshes. The method can be applied to both incompressible and subsonic compressible flows. For subsonic compressible flows, the energy equation is also coupled with flow field and the density of fluid is obtained by equation of state. The procedure eliminates the pressure correction step, the most expensive component of the SIMPLE-like algorithms. The proposed coupled continuity-momentum-energy equation method can be used to simulate steady state or transient flow problems. The method has been tested on several CFD benchmark cases with excellent results showing dramatically improved numerical convergence and significant reduction in computational time.  相似文献   

9.

Improved Navier–Stokes characteristic boundary conditions (NSCBC) are formulated for the direct numerical simulations (DNS) of laminar and turbulent counterflow flame configurations with a compressible flow formulation. The new boundary scheme properly accounts for multi-dimensional flow effects and provides nonreflecting inflow and outflow conditions that maintain the mean imposed velocity and pressure, while substantially eliminating spurious acoustic wave reflections. Applications to various counterflow configurations demonstrate that the proposed boundary conditions yield accurate and robust solutions over a wide range of flow and scalar variables, allowing high fidelity in detailed numerical studies of turbulent counterflow flames.  相似文献   

10.
The velocity fields obtained by PIV (Particle Image Velocimetry) in supersonic flows are not sufficient to determine the integral characteristics of the flow. Additional data, for example, on pressure can be obtained from the solution of the Navier?Stokes equations. For incompressible flows, the solution of these equations is not too complicated. However, for supersonic flows, the need to take into account the flow density and the increasing number of experimental errors make it more difficult. This paper proposes a new method for calculating density and pressure from PIV data on the basis of the continuity equation. This method is robust and easy to implement for compressible flows.  相似文献   

11.
陈兴旺  施保昌 《中国物理》2005,14(7):1398-1406
绝大多数现有的格子波尔兹曼磁流体动力学模型其实是用可压缩方法来模拟不可压磁流体。而这些可压缩效应在数值模拟中往往会带来意想不到的误差。在这篇文章中,我们提出了一个全新的可用于的不可压格子波尔兹曼磁流体动力学模型,并且进行了哈特曼流的数值模拟。模拟结果与哈特曼流的解析解非常吻合。这个方法需要一个假设条件来消除误差。我们做了大量的数值试验,并且与Dellar教授的模型进行了详细的分析与比较。  相似文献   

12.
Most simulation methods for compressible flow attain numerical stability at the cost of swamping the fine turbulent flow structures by artificial dissipation. This article demonstrates that numerical stability can also be attained by preserving conservation laws at the discrete level. A new mathematical explanation of conservation in compressible flow reveals that many conservation properties of convection are due to the skew-symmetry of the convection operator. By preserving this skew-symmetry at the discrete level, a fourth-order accurate collocated symmetry-preserving discretisation with excellent conservation properties is obtained. Also a new symmetry-preserving regularisation subgrid-scale model is proposed. The proposed techniques are assessed in simulations of compressible turbulent channel flow. The symmetry-preserving discretisation for compressible flow has good stability without artificial dissipation and yields acceptable results already on coarse grids. Regularisation does not consistently improve upon no-model results, but often compares favourably with eddy-viscosity models.  相似文献   

13.
Combustion instability in a laboratory scale backward-facing step combustor is numerically investigated by carrying out an acoustically coupled incompressible large eddy simulation of turbulent reacting flow for various Reynolds numbers with fuel injection at the step. The problem is mathematically formulated as a decomposition of the full compressible Navier–Stokes equations using multi-scale analysis by recognising the small length scale and large time scale of the flow field relative to a longitudinal mode acoustic field for low mean Mach numbers. The equations are decomposed into those for an incompressible flow with temperature-dependent density to zeroth order and linearised Euler equations for acoustics as a first order compressibility correction. Explicit coupling terms between the two equation sets are identified to be the flow dilatation as a source of acoustic energy and the acoustic Reynolds stress (ARS) as a source of flow momentum. The numerical simulations are able to capture the experimentally observed flow–acoustic lock-on that signifies the onset of combustion instability, marked by a shift in the dominant frequency from an acoustic to a hydrodynamic mode and accompanied by a nonlinear variation of pressure amplitude. Attention is devoted to flow conditions at two Reynolds numbers before and after lock-on to show that, after lock-on, the ARS causes large-scale vortical rollup resulting in the evolution of a compact flame. As compared to acoustically uncoupled simulations at these Reynolds numbers that show an elongated flame with no significant roll up and disturbance in the upstream flow field, the ARS is seen to alter the shear layer dynamics by affecting the flow field upstream of the step as well, when acoustically coupled.  相似文献   

14.
Lattice Boltzmann Method is recently developed within numerical schemes for simulating a variety of physical systems. In this paper a new lattice.Bhatnagar-Gross-Krook (LBGK) model for two-dimensional incompressible magnetohydrodynamics (IMHD) is presented. The model is an extension of a hydrodynamics lattice BGK model with 9 velocities on a square lattice, resulting in a model with 17 velocities. Most of the existing LBGK models for MHD can be viewed as compressible schemes to simulate incompressible flows. The compressible effect might lead to some undesirable errors in numerical simulations. In our model the compressible effect has been overcome successfully. The model is then applied to the Hartmann flow, giving reasonable results.  相似文献   

15.
Lattice Boltzmann Method is recently developed within numerical schemes for simulating a variety of physical systems. In this paper a new lattice Bhatnagar-Gross-Krook (LBGK) model for two-dimensional incompressible magnetohydrodynamics (IMHD) is presented. The model is an extension of a hydrodynamics lattice BGK model with 9 velocities on a square lattice, resulting in a model with 17 velocities. Most of the existing LBGK models for MHD can be viewed as compressible schemes to simulate incompressible flows. The compressible effect might lead to some undesirable errors in numerical simulations. In our model the compressible effect has been overcome successfully. The model is then applied to the Hartmann flow, giving reasonable results.  相似文献   

16.
A speckle photographic technique is used for visualizing the planar distribution of the refractive deflection angles of light transmitted through the compressible turbulent flow. Both double and single (prolonged) exposure speckle photography are applied for statistical analysis of such flows. Using single (prolonged) exposure speckle photography (SPESP), instantaneous quantitative measurement of 2-D distribution of turbulence intensity in a flame is performed. Anisotropy of turbulence is visualized by a diffraction halo form and quantitatively evaluated by measuring the diffraction halo diameters. Using double exposure speckle photography (DESP), quantitative visualization of the planar distribution of the refractive deflection angles of the light transmitted through the compressible turbulent flow is done. Turbulent structures are visible in the patterns of the deflection angles isolines. The 2-D correlation functions of these deflection angles are constructed and analyzed. The 3-D density correlation functions are evaluated using the Erbeck–Merzkirch integral transformation.  相似文献   

17.
A new approach was proposed for simulation of unsteady cavitating flow in the flow passage of a hydraulic power plant. 1D hydro-acoustics equations are solved in the penstock domain. 3D equations of turbulent flow of isothermal compressible liquid-vapor mixture are solved in the turbine domain. Cavitation is described by a transfer equation for liquid phase with a source term which is responsible for evaporation and condensation. The developed method was applied for simulation of pulsations in pressure, discharge, and total energy propagating along the flow conduit of the hydraulic power plant. Simulation results are in qualitative and quantitative agreement with experiment. The influence of key physical and numerical parameters like discharge, cavitation number, penstock length, time step, and vapor density on simulation results was studied.  相似文献   

18.
A fourth-order numerical method for the zero-Mach-number limit of the equations for compressible flow is presented. The method is formed by discretizing a new auxiliary variable formulation of the conservation equations, which is a variable density analog to the impulse or gauge formulation of the incompressible Euler equations. An auxiliary variable projection method is applied to this formulation, and accuracy is achieved by combining a fourth-order finite-volume spatial discretization with a fourth-order temporal scheme based on spectral deferred corrections. Numerical results are included which demonstrate fourth-order spatial and temporal accuracy for non-trivial flows in simple geometries.  相似文献   

19.
Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.  相似文献   

20.
We present numerical schemes for the incompressible Navier–Stokes equations (NSE) with open and traction boundary conditions. We use pressure Poisson equation (PPE) formulation and propose new boundary conditions for the pressure on the open or traction boundaries. After replacing the divergence free constraint by this pressure Poisson equation, we obtain an unconstrained NSE. For Stokes equation with open boundary condition on a simple domain, we prove unconditional stability of a first order semi-implicit scheme where the pressure is treated explicitly and hence is decoupled from the computation of velocity. Using either boundary condition, the schemes for the full NSE that treat both convection and pressure terms explicitly work well with various spatial discretizations including spectral collocation and C0 finite elements. Moreover, when Reynolds number is of O(1) and when the first order semi-implicit time stepping is used, time step size of O(1) is allowed in benchmark computations for the full NSE. Besides standard stability and accuracy check, various numerical results including flow over a backward facing step, flow past a cylinder and flow in a bifurcated tube are reported. Numerically we have observed that using PPE formulation enables us to use the velocity/pressure pairs that do not satisfy the standard inf–sup compatibility condition. Our results extend that of Johnston and Liu [H. Johnston, J.-G. Liu, Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comp. Phys. 199 (1) (2004) 221–259] which deals with no-slip boundary conditions only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号