首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
For a commutative ring R with identity, the annihilating-ideal graph of R, denoted 𝔸𝔾(R), is the graph whose vertices are the nonzero annihilating ideals of R with two distinct vertices joined by an edge when the product of the vertices is the zero ideal. We will generalize this notion for an ideal I of R by replacing nonzero ideals whose product is zero with ideals that are not contained in I and their product lies in I and call it the annihilating-ideal graph of R with respect to I, denoted 𝔸𝔾 I (R). We discuss when 𝔸𝔾 I (R) is bipartite. We also give some results on the subgraphs and the parameters of 𝔸𝔾 I (R).  相似文献   

2.
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)?{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.  相似文献   

3.
Let R be a commutative ring with identity and denote Γ(R) for its zero-divisor graph. In this paper, we study the minimal embedding of the line graph associated to Γ(R), denoted by L(Γ(R)), into compact surfaces (orientable or non-orientable) and completely classify all finite commutative rings R such that the line graphs associated to their zero-divisor graphs have genera or crosscaps up to two.  相似文献   

4.
The zero-divisor graph of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy=0. In this paper, a decomposition theorem is provided to describe weakly central-vertex complete graphs of radius 1. This characterization is then applied to the class of zero-divisor graphs of commutative rings. For finite commutative rings whose zero-divisor graphs are not isomorphic to that of Z4[X]/(X2), it is shown that weak central-vertex completeness is equivalent to the annihilator condition. Furthermore, a schema for describing zero-divisor graphs of radius 1 is provided.  相似文献   

5.
A graph Γ is said to be End-regular if its endomorphism monoid End(Γ) is regular. D. Lu and T. Wu [25 Lu, D., Wu, T. (2008). On endomorphism-regularity of zero-divisor graphs. Discrete Math. 308:48114815.[Crossref], [Web of Science ®] [Google Scholar]] posed an open problem: Given a ring R, when does the zero-divisor graph Γ(R) have a regular endomorphism monoid? and they solved the problem for R a commutative ring with at least one nontrivial idempotent. In this paper, we solve this problem for zero-divisor graphs of group rings.  相似文献   

6.
It is well known that the Rickart property of rings is not a left-right symmetric property. We extend the notion of the left Rickart property of rings to a general module theoretic setting and define 𝔏-Rickart modules. We study this notion for a right R-module M R where R is any ring and obtain its basic properties. While it is known that the endomorphism ring of a Rickart module is a right Rickart ring, we show that the endomorphism ring of an 𝔏-Rickart module is not a left Rickart ring in general. If M R is a finitely generated 𝔏-Rickart module, we prove that End R (M) is a left Rickart ring. We prove that an 𝔏-Rickart module with no set of infinitely many nonzero orthogonal idempotents in its endomorphism ring is a Baer module. 𝔏-Rickart modules are shown to satisfy a certain kind of nonsingularity which we term “endo-nonsingularity.” Among other results, we prove that M is endo-nonsingular and End R (M) is a left extending ring iff M is a Baer module and End R (M) is left cononsingular.  相似文献   

7.
8.
Tongsuo Wu  Dancheng Lu   《Discrete Mathematics》2008,308(22):5122-5135
In this paper we study sub-semigroups of a finite or an infinite zero-divisor semigroup S determined by properties of the zero-divisor graph Γ(S). We use these sub-semigroups to study the correspondence between zero-divisor semigroups and zero-divisor graphs. In particular, we discover a class of sub-semigroups of reduced semigroups and we study properties of sub-semigroups of finite or infinite semilattices with the least element. As an application, we provide a characterization of the graphs which are zero-divisor graphs of Boolean rings. We also study how local property of Γ(S) affects global property of the semigroup S, and we discover some interesting applications. In particular, we find that no finite or infinite two-star graph has a corresponding nil semigroup.  相似文献   

9.
Ivana Božić 《代数通讯》2013,41(4):1186-1192
We investigate the properties of (directed) zero-divisor graphs of matrix rings. Then we use these results to discuss the relation between the diameter of the zero-divisor graph of a commutative ring R and that of the matrix ring M n (R).  相似文献   

10.
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is Γ(R) = Z(R)\{0}, with distinct vertices x and y adjacent if and only if xy = 0. In this article, we study Γ(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that {0} ≠ Nil(R) ? zR for all z ∈ Z(R)\Nil(R).  相似文献   

11.
John D. LaGrange 《代数通讯》2013,41(12):4509-4520
An algorithm is presented for constructing the zero-divisor graph of a direct product of integral domains. Moreover, graphs which are realizable as zero-divisor graphs of direct products of integral domains are classified, as well as those of Boolean rings. In particular, graphs which are realizable as zero-divisor graphs of finite reduced commutative rings are classified.  相似文献   

12.
《代数通讯》2013,41(2):1031-1043
Abstract

The present article clarifies the stability of the 𝕀-invariant of the associated graded modules G(𝔞 n E) when n is increasing. It will be shown that the 𝕀-invariant 𝕀(G(𝔞 n E)) becomes a constant if n is sufficiently large.  相似文献   

13.
G. Aalipour  S. Akbari 《代数通讯》2013,41(4):1582-1593
Let R be a commutative ring with unity and R +, U(R), and Z*(R) be the additive group, the set of unit elements, and the set of all nonzero zero-divisors of R, respectively. We denote by ?𝔸𝕐(R) and G R , the Cayley graph Cay(R +, Z*(R)) and the unitary Cayley graph Cay(R +, U(R)), respectively. For an Artinian ring R, Akhtar et al. (2009) studied G R . In this article, we study ?𝔸𝕐(R) and determine the clique number, chromatic number, edge chromatic number, domination number, and the girth of ?𝔸𝕐(R). We also characterize all rings R whose ?𝔸𝕐(R) is planar. Moreover, we determine all finite rings R whose ?𝔸𝕐(R) is strongly regular. We prove that ?𝔸𝕐(R) is strongly regular if and only if it is edge transitive. As a consequence, we characterize all finite rings R for which G R is a strongly regular graph.  相似文献   

14.
A. M. Rahimi 《代数通讯》2013,41(5):1989-2004
Let R be a commutative ring with identity 1 ≠ 0. A nonzero element a in R is said to be a Smarandache zero-divisor if there exist three different nonzero elements x, y, and b (≠ a) in R such that ax = ab = by = 0, but xy ≠ 0. We will generalize this notion to the Smarandache vertex of an arbitrary simple graph and characterize the Smarandache zero-divisors of commutative rings (resp. with respect to an ideal) via their associated zero-divisor graphs. We illustrate them with examples and prove some interesting results about them.  相似文献   

15.
For a commutative ring R with identity, an ideal-based zero-divisor graph, denoted by Γ I (R), is the graph whose vertices are {x ∈ R?I | xy ∈ I for some y ∈ R?I}, and two distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we investigate an annihilator ideal-based zero-divisor graph by replacing the ideal I with the annihilator ideal Ann(M) for a multiplication R-module M. Based on the above-mentioned definition, we examine some properties of an R-module over a von Neumann regular ring, and the cardinality of an R-module associated with Γ Ann(M)(R).  相似文献   

16.
For a commutative ring R with zero-divisors Z(R), the zero-divisor graph of R is Γ(R)=Z(R)−{0}, with distinct vertices x and y adjacent if and only if xy=0. In this paper, we characterize when either or . We then use these results to investigate the diameter and girth for the zero-divisor graphs of polynomial rings, power series rings, and idealizations.  相似文献   

17.
Hamed Ahmed  Hizem Sana 《代数通讯》2013,41(9):3848-3856
Let 𝒜 = (A n ) n≥0 be an ascending chain of commutative rings with identity, S ? A 0 a multiplicative set of A 0, and let 𝒜[X] (respectively, 𝒜[[X]]) be the ring of polynomials (respectively, power series) with coefficient of degree i in A i for each i ∈ ?. In this paper, we give necessary and sufficient conditions for the rings 𝒜[X] and 𝒜[[X]] to be S ? Noetherian.  相似文献   

18.
In this paper, we study the edge clique cover number of squares of graphs. More specifically, we study the inequality θ(G2)θ(G) where θ(G) is the edge clique cover number of a graph G. We show that any graph G with at most θ(G) vertices satisfies the inequality. Among the graphs with more than θ(G) vertices, we find some graphs violating the inequality and show that dually chordal graphs and power-chordal graphs satisfy the inequality. Especially, we give an exact formula computing θ(T2) for a tree T.  相似文献   

19.
Prosenjit Das 《代数通讯》2013,41(9):3221-3223
Let k be a field. In this article, we will show that any factorial 𝔸1-form A over any k-algebra R is trivial if A has a retraction to R.  相似文献   

20.
Dawei Xin  Jianlong Chen 《代数通讯》2013,41(3):1094-1106
Let R be a ring and 𝒲 a self-orthogonal class of left R-modules which is closed under finite direct sums and direct summands. A complex C of left R-modules is called a 𝒲-complex if it is exact with each cycle Z n (C) ∈ 𝒲. The class of such complexes is denoted by 𝒞𝒲. A complex C is called completely 𝒲-resolved if there exists an exact sequence of complexes D · = … → D ?1 → D 0 → D 1 → … with each term D i in 𝒞𝒲 such that C = ker(D 0 → D 1) and D · is both Hom(𝒞𝒲, ?) and Hom(?, 𝒞𝒲) exact. In this article, we show that C = … → C ?1 → C 0 → C 1 → … is a completely 𝒲-resolved complex if and only if C n is a completely 𝒲-resolved module for all n ∈ ?. Some known results are obtained as corollaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号