首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The atom-bond connectivity(ABC) index of a graph G, introduced by Estrada,Torres, Rodr′?guez and Gutman in 1998, is defined as the sum of the weights(1/di+1/dj-2/didj )~(1/2) of all edges vivj of G, where di denotes the degree of the vertex vi in G. In this paper, we give an upper bound of the ABC index of a two-tree G with n vertices, that is, ABC(G) ≤(2n- 4)2~(1/2)/2+(2n-4)~(1/2)/n-1. We also determine the two-trees with the maximum and the second maximum ABC index.  相似文献   

2.
图G的零阶广义Randi指标定义为0Rα(G)=v∈V(G)d(v)α,其中d(v)为图G的顶点v的度,α为任意实数.研究了树的零阶广义Rα指标的极值问题,利用分析和图的理论,确定了任意给定最大匹配数的树的最大和最小Rα的值,并刻画了达到该极值的树.  相似文献   

3.
通过研究Hausdoff距离的性质,给出了在度量空间下广义向量拟平衡问题的解集是集值情况下的解集的Hlder连续性.  相似文献   

4.
倪仁兴最近的文章研究了广义最速下降法强收敛于拟增生算子方程解的一特征条件.本文对此进行了修正和改进,给出了一个新的特征条件.所得结果同时改进和推广了一些已有的结果.  相似文献   

5.
利用广义拟线性方法研究了时标上非线性动力方程m点边值问题,给出了一种有效求解方法.  相似文献   

6.
树指标马氏链的等价定义   总被引:1,自引:0,他引:1  
国内外关于树指标随机过程的研究已经取得了一定的成果.Benjamini和Peres首先给出了树指标马氏链的定义.Berger和叶中行研究了齐次树图上平稳随机场熵率的存在性.杨卫国与刘文研究了树上马氏场的强大数定律与渐近均分性.杨卫国又研究了一般树指标马氏链的强大数定律.为了以后更有效的研究树指标随机过程的一系列相关问题,本文在分析研究前人成果的基础上,给出了树指标马氏链的等价定义,并用数学归纳法证明了其等价性.  相似文献   

7.
G -凸空间中的广义对策和广义矢量拟平衡问题组   总被引:2,自引:0,他引:2  
该文在广义G -凸空间中引入并研究了一类新的广义矢量拟平衡问题组(SGVQEP).利用作者的一族集值映象的极大元存在定理,证明了广义对策的一个新的平衡存在定理.作为应用,在非紧乘积G -凸空间中证明了SGVQEP解的一些新的存在定理.  相似文献   

8.
证明了广义最速下降逼近强收敛于定义在一致光滑实Banach空间的真子集上的有界拟增生算子的零点的一充要条件,几个相关的结果处理含-强拟增生算子方程解或拟伪压缩映射不动点的强收敛性.所得的这些结果推广和统一了许多前人的近期相应结果.  相似文献   

9.
图G的一个L(2,1)-标号是对G顶点集合的一个非负整数分配,使得其中相邻的点取得的整数差值至少为2并且距离为2的点取得不同的整数.L(2,1)-标号数就是所有这样的标号分配中最小的标号跨度值.Griggs和Yeh的[Labelling graphs with a condition at distance 2,SIAM J.Discrete Math.,1992,5:586-595]已经证明了,一棵树的L(2,1)-标号数不是△就是△+1.对于最大度为3的树的L(2,1)-标号数,本文给出了一个完全的刻画.  相似文献   

10.
二阶积分微分方程的广义拟线性化方法   总被引:1,自引:0,他引:1  
运用广义拟线性化方法研究了正规锥上的二阶积分微分方程初值问题,获得了逼近解序列一致且平方收敛的结果.  相似文献   

11.
    
The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index M2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. In this paper, we obtain lower and upper bounds on the first Zagreb index M1(G) of G in terms of the number of vertices (n), number of edges (m), maximum vertex degree (Δ), and minimum vertex degree (δ). Using this result, we find lower and upper bounds on M2(G). Also, we present lower and upper bounds on M2(G) +M2(G) in terms of n, m, Δ, and δ, where G denotes the complement of G. Moreover, we determine the bounds on first Zagreb coindex M1(G) and second Zagreb coindex M2(G). Finally, we give a relation between the first Zagreb index and the second Zagreb index of graph G.  相似文献   

12.
For a non-zero real number α, let s α (G) denote the sum of the αth power of the non-zero Laplacian eigenvalues of a graph G. In this paper, we establish a connection between s α (G) and the first Zagreb index in which the Hölder’s inequality plays a key role. By using this result, we present a lot of bounds of s α (G) for a connected (molecular) graph G in terms of its number of vertices (atoms) and edges (bonds). We also present other two bounds for s α (G) in terms of connectivity and chromatic number respectively, which generalize those results of Zhou and Trinajsti? for the Kirchhoff index [B Zhou, N Trinajsti?. A note on Kirchhoff index, Chem. Phys. Lett., 2008, 455: 120–123].  相似文献   

13.
14.
    
The first and second Zagreb eccentricity indices of graph G are defined as:E1(G)=∑(vi)∈V(G)εG(vi)~2,E2(G)=∑(vivj)∈E(G)εG(vi)εG(vj)whereεG(vi)denotes the eccentricity of vertex vi in G.The eccentric complexity C(ec)(G)of G is the number of different eccentricities of vertices in G.In this paper we present some results on the comparison between E1(G)/n and E2(G)/m for any connected graphs G of order n with m edges,including general graphs and the graphs with given C(ec).Moreover,a Nordhaus-Gaddum type result C(ec)(G)+C(ec)(■)is determined with extremal graphs at which the upper and lower bounds are attained respectively.  相似文献   

15.
16.
Recently introduced Zagreb coindices are a generalization of classical Zagreb indices of chemical graph theory. We explore here their basic mathematical properties and present explicit formulae for these new graph invariants under several graph operations.  相似文献   

17.
The first and second reformulated Zagreb indices are defined respectively in terms of edge-degrees as EM1(G)=∑eEdeg(e)2 and EM2(G)=∑efdeg(e)deg(f), where deg(e) denotes the degree of the edge e, and ef means that the edges e and f are adjacent. We give upper and lower bounds for the first reformulated Zagreb index, and lower bounds for the second reformulated Zagreb index. Then we determine the extremal n-vertex unicyclic graphs with minimum and maximum first and second Zagreb indices, respectively. Furthermore, we introduce another generalization of Zagreb indices.  相似文献   

18.
设$kge 2$是整数.如果对任意包含$k$个顶点的子集$Ssubseteq V(G)$,图$G$总存在一个生成树$T$ 使得$S$恰好是树$T$的叶子点集,那么称图$G$ 是$k$-叶子连通的.本文中,我们利用图$G$或其补图的第一Zagre-指标、第二Zagreb-指标和超Zagreb-指标证明了图是$k$-叶子连通的最佳可能的充分条件.  相似文献   

19.
20.
Let G be a simple connected graph with vertex set V(G) and edge set E(G).The augmented Zagreb index of a graph G is defined asAZI(G) =∑uv∈E(G)(d_ud_v/(d_u + d_v-2))~3,and the atom-bond connectivity index(ABC index for short) of a graph G is defined asABC(G) =∑uv∈E(G)((d_u + d_v-2)/d_ud_v),where d_u and d_v denote the degree of vertices u and v in G,respectively.In this paper,trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号