首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this paper, we compare two block triangular preconditioners for different linearizations of the Rayleigh–Bénard convection problem discretized with finite element methods. The two preconditioners differ in the nested or nonnested use of a certain approximation of the Schur complement associated to the Navier–Stokes block. First, bounds on the generalized eigenvalues are obtained for the preconditioned systems linearized with both Picard and Newton methods. Then, the performance of the proposed preconditioners is studied in terms of computational time. This investigation reveals some inconsistencies in the literature that are hereby discussed. We observe that the nonnested preconditioner works best both for the Picard and for the Newton cases. Therefore, we further investigate its performance by extending its application to a mixed Picard–Newton scheme. Numerical results of two‐ and three‐dimensional cases show that the convergence is robust with respect to the mesh size. We also give a characterization of the performance of the various preconditioned linearization schemes in terms of the Rayleigh number.  相似文献   

2.
Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding preconditioned matrices. Numerical experiments show that these rotated block triangular preconditioners can be competitive to and even more efficient than the PMHSS pre-conditioner when they are used to accelerate Krylov subspace iteration methods for solving block two-by-two linear systems with coefficient matrices possibly of nonsymmetric sub-blocks.  相似文献   

3.
Sabine Le Borne 《PAMM》2006,6(1):747-748
For saddle point problems in fluid dynamics, many preconditioners in the literature exploit the block structure of the problem to construct block diagonal or block triangular preconditioners. The performance of such preconditioners depends on whether fast, approximate solvers for the linear systems on the block diagonal as well as for the Schur complement are available. We will construct these efficient preconditioners using hierarchical matrix techniques in which fully populated matrices are approximated by blockwise low rank approximations. We will compare such block preconditioners with those obtained through a completely different approach where the given block structure is not used but a domain-decomposition based ℋ︁-LU factorization is constructed for the complete system matrix. Preconditioners resulting from these two approaches will be discussed and compared through numerical results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper, shift-splitting preconditioners are studied for a special class of block three-by-three saddle point problems, which arise from many practical problems and are different from the traditional saddle point problems. It is proved that the block three-by-three saddle point matrix is positive stable and the corresponding shift-splitting stationary iteration method is unconditionally convergent, which leads to a nice clustering property of the eigenvalues of the shift-splitting preconditioned matrix. Numerical results show that the proposed shift-splitting preconditioners outperform much better than some existing block diagonal preconditioners studied recently.  相似文献   

5.
Numerical Algorithms - In this paper, a class of additive block triangular preconditioners are constructed for solving block two-by-two linear systems with symmetric positive (semi-)definite...  相似文献   

6.
We consider the iterative solution of linear systems arising from four convection–diffusion model problems: scalar convection–diffusion problem, Stokes problem, Oseen problem and Navier–Stokes problem. We design preconditioners for these model problems that are based on Kronecker product approximations (KPAs). For this we first identify explicit Kronecker product structure of the coefficient matrices, in particular for the convection term. For the latter three model cases, the coefficient matrices have a 2 × 2 block structure, where each block is a Kronecker product or a summation of several Kronecker products. We then use this structure to design a block diagonal preconditioner, a block triangular preconditioner and a constraint preconditioner. Numerical experiments show the efficiency of the three KPA preconditioners, and in particular of the constraint preconditioner that usually outperforms the other two. This can be explained by the relationship that exists between these three preconditioners: the constraint preconditioner can be regarded as a modification of the block triangular preconditioner, which at its turn is a modification of the block diagonal preconditioner based on the cell Reynolds number. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new lower bound on a positive stable block triangular preconditioner for saddle point problems is derived; it is superior to the corresponding result obtained by Cao [Z.-H. Cao, Positive stable block triangular preconditioners for symmetric saddle point problems, Appl. Numer. Math. 57 (2007) 899–910]. A numerical example is reported to confirm the presented result.  相似文献   

8.
The parameterized Uzawa preconditioners for saddle point problems are studied in this paper. The eigenvalues of the preconditioned matrix are located in (0, 2) by choosing the suitable parameters. Furthermore, we give two strategies to optimize the rate of convergence by finding the suitable values of parameters. Numerical computations show that the parameterized Uzawa preconditioners can lead to practical and effective preconditioned GMRES methods for solving the saddle point problems.  相似文献   

9.
We discuss a class of preconditioning methods for the iterative solution of symmetric algebraic saddle point problems, where the (1, 1) block matrix may be indefinite or singular. Such problems may arise, e.g. from discrete approximations of certain partial differential equations, such as the Maxwell time harmonic equations. We prove that, under mild assumptions on the underlying problem, a class of block preconditioners (including block diagonal, triangular and symmetric indefinite preconditioners) can be chosen in a way which guarantees that the convergence rate of the preconditioned conjugate residuals method is independent of the discretization mesh parameter. We provide examples of such preconditioners that do not require additional scaling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We present a new stationary iterative method, called Scale-Splitting (SCSP) method, and investigate its convergence properties. The SCSP method naturally results in a simple matrix splitting preconditioner, called SCSP-preconditioner, for the original linear system. Some numerical comparisons are presented between the SCSP-preconditioner and several available block preconditioners, such as PGSOR (Hezari et al. Numer. Linear Algebra Appl. 22, 761–776, 2015) and rotate block triangular preconditioners (Bai Sci. China Math. 56, 2523–2538, 2013), when they are applied to expedite the convergence rate of Krylov subspace iteration methods for solving the original complex system and its block real formulation, respectively. Numerical experiments show that the SCSP-preconditioner can compete with PGSOR-preconditioner and even more effective than the rotate block triangular preconditioners.  相似文献   

11.
Symmetric collocation methods with RBFs allow approximation of the solution of a partial differential equation, even if the right‐hand side is only known at scattered data points, without needing to generate a grid. However, the benefit of a guaranteed symmetric positive definite block system comes at a high computational cost. This cost can be alleviated somewhat by considering compactly supported RBFs and a multiscale technique. But the condition number and sparsity will still deteriorate with the number of data points. Therefore, we study certain block diagonal and triangular preconditioners. We investigate ideal preconditioners and determine the spectra of the preconditioned matrices before proposing more practical preconditioners based on a restricted additive Schwarz method with coarse grid correction. Numerical results verify the effectiveness of the preconditioners. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we investigate the possibility of using a block‐triangular preconditioner for saddle point problems arising in PDE‐constrained optimization. In particular, we focus on a conjugate gradient‐type method introduced by Bramble and Pasciak that uses self‐adjointness of the preconditioned system in a non‐standard inner product. We show when the Chebyshev semi‐iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble–Pasciak method—the appropriate scaling of the preconditioners—is easily overcome. We present an eigenvalue analysis for the block‐triangular preconditioners that gives convergence bounds in the non‐standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Short and unified proofs of spectral properties of major preconditioners for saddle point problems are presented. The need to sufficiently accurately construct approximations of the pivot block and Schur complement matrices to obtain real eigenvalues or eigenvalues with positive real parts and non‐dominating imaginary parts are pointed out. The use of augmented Lagrangian methods for more ill‐conditioned problems are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
廖丽丹  张国凤 《计算数学》2022,44(4):545-560
针对一类由时谐抛物方程约束的最优控制问题导出的分块$2\times2$复线性方程组,进一步研究了三类有效的块预处理子,推导了这三类预处理子间的关系,结论表明三个预处理矩阵的特征值由同一个矩阵确定.通过分析预处理矩阵的谱性质,获得了有效的参数选择策略,可以进一步改进和优化现有结果,同时获得了预处理矩阵的精确特征值分布,并证明了此结果是目前文献中最优结果.最后,给出实例,不仅验证了优化的预处理子和迭代方法的有效性,而且说明了理论结果是令人信服的.  相似文献   

15.
广义鞍点问题的块三角预条件子   总被引:2,自引:2,他引:0  
蒋美群  曹阳 《计算数学》2010,32(1):47-58
本文对Golub和Yuan(2002)中给出的ST分解推广到广义鞍点问题上,给出了三种块预条件子,并重点分析了其中两种预条件子应用到广义鞍点问题上所得到的对称正定阵,得出了其一般的性质并重点研究了预处理矩阵条件数的上界,最后给出了数值算例.  相似文献   

16.
Three domain decomposition methods for saddle point problems are introduced and compared. The first two are block‐diagonal and block‐triangular preconditioners with diagonal blocks approximated by an overlapping Schwarz technique with positive definite local and coarse problems. The third is an overlapping Schwarz preconditioner based on indefinite local and coarse problems. Numerical experiments show that while all three methods are numerically scalable, the last method is almost always the most efficient. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Bounds are given for eigenvalues of hermitian completions of partial hermitian matrices, and for singular values of completions of partial block triangular matrices.  相似文献   

18.
We propose a variant of parallel block incomplete factorization preconditioners for a symmetric block-tridiagonalH-matrix. Theoretical properties of these block preconditioners are compared with those of block incomplete factorization preconditioners for the corresponding comparison matrix. Numerical results of the preconditioned CG(PCG) method using these block preconditioners are compared with those of PCG using other types of block incomplete factorization preconditioners. Lastly, parallel computations of the block incomplete factorization preconditioners are carried out on the Cray C90.  相似文献   

19.
Both theoretical analysis and numerical experiments in the literature have shown that the Tyrtyshnikov circulant superoptimal preconditioner for Toeplitz systems can speed up the convergence of iterative methods without amplifying the noise of the data. Here we study a family of Tyrtyshnikov‐based preconditioners for discrete ill‐posed Toeplitz systems with differentiable generating functions. In particular, we show that the distribution of the eigenvalues of these preconditioners has good regularization features, since the smallest eigenvalues stay well separated from zero. Some numerical results confirm the regularization effectiveness of this family of preconditioners. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The connection between the multilevel factorization method recently proposed by Sarin and Sameh for solving mixed discretizations of the Stokes equation using a divergence-free finite element formulation, and hierarchical basis preconditioners for the Poisson problem is established. For the 2D triangular Taylor–Hood element, a preconditioner is proposed that could be useful in fractional step methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号