首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
Let H be a subset of the set Sn of all permutations
12???ns(1)s(2)???s(n)
C=6cij6 a real n?n matrix Lc(s)=c1s(1)+c2s(2)+???+cns(n) for s ? H. A pair (H, C) is the existencee of reals a1,b1,a2,b2,…an,bn, for which cij=a1+bj if (i,j)?D(H), where D(H)={(i,j):(?h?H)(j=h(i))}.For a pair (H,C) the specifity of it is proved in the case, when H is either a special cyclic class of permutations or a special union of cyclic classes. Specific pairs with minimal sets H are in some sense described.  相似文献   

2.
Let T be a rooted tree structure with n nodes a1,…,an. A function f: {a1,…,an} into {1 < ? < k} is called monotone if whenever ai is a son of aj, then f(ai) ≥ f(aj). The average number of monotone bijections is determined for several classes of tree structures. If k is fixed, for the average number of monotone functions asymptotic equivalents of the form c · ??nn?32 (n → ∞) are obtained for several classes of tree structures.  相似文献   

3.
Using old results on the explicit calculation of determinants, formulae are given for the coefficients of P0(z) and P0(z)fi(z) ? Pi(z), where Pi(z) are polynomials of degree σ ? ρi (i=0,1,…,n), P0(z)fi(z) ? Pi(z) are power series in which the terms with zk, 0?k?σ, vanish (i=1,2,…,n), (ρ0,ρ1,…,ρn) is an (n+1)-tuple of nonnegative integers, σ=ρ0+ρ1+?+ρn, and {fi}ni=1 is the set of hypergeometric functions {1F1(1;ci;z)}ni=1(ci?Zz.drule;N, ci ? cj?Z) or {2F0(ai,1;z)}ni=1(ai ?Z?N, ai ? aj?Z) under the condition ρ0?ρi ? 1 (i=1,2,…,n).  相似文献   

4.
Let V(n) denote the n-dimensional vector space over the 2-element field. Let a(m, r) (respectively, c(m, r)) denote the smallest positive integer such that if n ? a(m, r) (respectively, n ? c(m, r)), and V(n) is arbitrarily partitioned into r classes Ci, 1 ? i ? r, then some class Ci must contain an m-dimensional affine (respectively, combinatorial) subspace of V(n). Upper bounds for the functions a(m, r) and c(m, r) are investigated, as are upper bounds for the corresponding “density functions” a(m, ?) and c(m, ?).  相似文献   

5.
A proof is given for the existence and uniqueness of a correspondence between two pairs of sequences {a},{b} and {ω},{μ}, satisfying bi>0 for i=1,…,n?1 and ω11<?<μn?1n, under which the symmetric Jacobi matrices J(n,a,b) and J(n?1,a,b) have eigenvalues {ω} and {μ} respectively. Here J(m,a,b) is symmetric and tridiagonal with diagonal elements ai (i=1,…,m) and off diagonal elements bi (i=1,…,m?1). A new concise proof is given for the known uniqueness result. The existence result is new.  相似文献   

6.
For a(1) ? a(2) ? ··· ? a(n) ? 0, b(1) ? b(2) ? ··· ? b(n) ? 0, the ordered values of ai, bi, i = 1, 2,…, n, m fixed, m ? n, and p ? 1 it is shown that
1naibi ? 1map(i)1p1m?k?1 bq(i)+bq[m?k](k+1)qp1q
where 1p + 1q = 1, b[j] = b(j) + b(j + 1) + ··· + b(n), and k is the integer such that b(m ? k ? 1) ? b[m ? k](k + 1) and b(m ? k) < b[m ? k + 1]k. The inequality is shown to be sharp. When p < 1 and a(i)'s are in increasing order then the inequality is reversed.  相似文献   

7.
8.
The level code representation of the simplest ballot problem (weak lead lattice paths from (0, 0) to (n, n) is the set of sequences (b1,…, bn) defined by b1 = 1, bi ?1bii, 2 ≤ in. Each sequence is monotone non-decreasing, has a specification (c1, c2,…, cn) with ci the number of sequence elements equal to i (hence c1 + c2…+ cn = n), and may be permuted in n!c1!…cn! ways. The set of permuted sequences, as noted in [4], is the set of parking functions, introduced by Konheim and Weiss in [1]. To count parking functions by number of fixed points, associate the rook polynomial for matching a deck of cards of specification (c1,…,cn), ci cards marked i, with a deck of n distinct cards. The hit polynomial Hn(x) corresponding to the sum of such rook polynomials over all sequences (I am using the terminology of [2]) is the required enumerator and turns out to be simply
(n+1)2Hn(x)=(x+n)n+1?(x?1)n+1
.  相似文献   

9.
Let x?Sn, the symmetric group on n symbols. Let θ? Aut(Sn) and let the automorphim order of x with respect to θ be defined by
γθ(x)=min{k:x xθ xθ2 ? xθk?1=1}
where is the image of x under θ. Let αg? Aut(Sn) denote conjugation by the element g?Sn. Let b(g; s, k : n) ≡ ∥{x ? Sn : kγαg(x)sk}∥ where s and k are positive integers and ab denotes a divides b. Further h(s, k : n) ≡ b(1; s, k : n), where 1 denotes the identity automorphim. If g?Sn let c = f(g, s) denote the number of symbols in g which are in cycles of length not dividing the integer s, and let gs denote the product of all cycles in g whose lengths do not divide s. Then gs moves c symbols. The main results proved are: (1) recursion: if n ? c + 1 and t = n ? c ? 1 then b(g; s, 1:n)=∑is b(g; s, 1:n?1)(ti?1(i?1)! (2) reduction: b(g; s, 1 : c)h(s, 1 : i) = b(g; s, 1 : i + c); (3) distribution: let D(θ, n) ≡ {(k, b) : k?Z+ and b = b(θ; 1, k : n) ≠ 0}; then D(θ, m) = D(φ, m) ∨ m ? N = N(θ, φ) iff θ is conjugate to φ; (4) evaluation: the number of cycles in gss of any given length is smaller than the smallest prime dividing s iff b(gs; s, 1 : c) = 1. If g = (12 … pm)t and skpm then b(g;s,k:pm) {0±1(mod p).  相似文献   

10.
《Applied Mathematics Letters》2004,17(10):1147-1152
The aim of this note is to generalize a result of Barron [1] concerning the approximation of functions, which can be expressed in terms of the Fourier transform, by superpositions of a fixed sigmoidal function. In particular, we consider functions of the type h(x) = ∫ℝd ƒ (〈t, x〉)dμ(t), where μ is a finite Radon measure on ℝd and ƒ : ℝ → ℂ is a continuous function with bounded variation in ℝ We show (Theorem 2.6) that these functions can be approximated in L2-norm by elements of the set Gn = {Σi=0staggeredn cig(〈ai, x〉 + bi) : aid, bi, ciℝ}, where g is a fixed sigmoidal function, with the error estimated by C/n1/2, where C is a positive constant depending only on f. The same result holds true (Theorem 2.9) for f : ℝ → ℂ satisfying the Lipschitz condition under an additional assumption that ∫ℝd6t6ed|u(t)| > ∞  相似文献   

11.
A surface Γ=(f 1(X1,..., xm),...,f n(x1,..., xm)) is said to be extremal if for almost all points of Γ the inequality $$\parallel a_1 f_1 (x_1 , \ldots ,x_m ) + \ldots + a_n f_n (x_1 , \ldots ,x_m )\parallel< H^{ - n - \varepsilon } ,$$ , where H=max(¦a i¦) (i=1, 2, ..., n), has only a finite number of solutions in the integersa 1, ...,a n. In this note we prove, for a specific relationship between m and n and a functional condition on the functionsf 1, ...,f n, the extremality of a class of surfaces in n-dimensional Euclidean space.  相似文献   

12.
W. Bucher, K. Culik II, H. Maurer and D. Wotschke (Theoretical Computer Science 14(1981), pp. 227–246) posed the problem of producing the language Ln = {ab: 1≤a,bn and ab} with a minimal number of productions. Later, W. Bucher, K. Culik II and H. Maurer showed that 2n + O(n12) productions are sufficient. In this note we show that 2n + ?2n12? productions are necessary for all n≥ 6.  相似文献   

13.
A set {b1,b2,…,bi} ? {1,2,…,N} is said to be a difference intersector set if {a1,a2,…,as} ? {1,2,…,N}, j > ?N imply the solvability of the equation ax ? ay = b′; the notion of sum intersector set is defined similarly. The authors prove two general theorems saying that if a set {b1,b2,…,bi} is well distributed simultaneously among and within all residue classes of small moduli then it must be both difference and sum intersector set. They apply these theorems to investigate the solvability of the equations (ax ? ayp = + 1, (au ? avp) = ? 1, (ar + asp) = + 1, (at + azp) = ? 1 (where (ap) denotes the Legendre symbol) and to show that “almost all” sets form both difference and sum intersector sets.  相似文献   

14.
For a number ? > 0 and a real function f on an interval [a, b], denote by N(?, f, [a, b]) the least upper bound of the set of indices n for which there is a family of disjoint intervals [a i , b i ], i = 1, …, n, on [a, b] such that |f(a i ) ? f(b i )| > ? for any i = 1, …, n (sup Ø = 0). The following theorem is proved: if {f j } is a pointwise bounded sequence of real functions on the interval [a, b] such that n(?) ≡ lim sup j→∞ N(?, f j , [a, b]) < ∞ for any ? > 0, then the sequence {f j } contains a subsequence which converges, everywhere on [a, b], to some function f such that N(?, f, [a, b]) ≤ n(?) for any ? > 0. It is proved that the main condition in this theorem related to the upper limit is necessary for any uniformly convergent sequence {f j } and is “almost” necessary for any everywhere convergent sequence of measurable functions, and many pointwise selection principles generalizing Helly’s classical theorem are consequences of our theorem. Examples are presented which illustrate the sharpness of the theorem.  相似文献   

15.
Let π = (a1, a2, …, an), ? = (b1, b2, …, bn) be two permutations of Zn = {1, 2, …, n}. A rise of π is pair ai, ai+1 with ai < ai+1; a fall is a pair ai, ai+1 with ai > ai+1. Thus, for i = 1, 2, …, n ? 1, the two pairs ai, ai+1; bi, bi+1 are either both rises, both falls, the first a rise and the second a fall or the first a fall and the second a rise. These possibilities are denoted by RR, FF, RF, FR. The paper is concerned with the enumeration of pairs π, p with a given number of RR, FF, RF, FR. In particular if ωn denotes the number of pairs with RR forbidden, it is proved that 0ωnznn!n! = 1?(z), ?(z) = ∑0(-1) nznn!n!. More precisely if ω(n, k) denotes the number of pairs π, p with exactly k occurences of RR(or FF, RF, FR) then 1 + ∑n=1znn!n!n?1k=0 ω(n, k)xk = (1 ? x)(?(z(1 ? x)) ? x).  相似文献   

16.
The following results are proved: Let A = (aij) be an n × n complex matrix, n ? 2, and let k be a fixed integer, 1 ? k ? n ? 1.(1) If there exists a monotonic G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1. (2) If A is irreducible and if there exists a G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1 if k ? 2, n ? 3; it is ? n ? 1 if k = 1.  相似文献   

17.
18.
Let f(n) denote the number of factorizations of the natural number n into factors larger than 1 where the order of the factors does not count. We say n is “highly factorable” if f(m)<f(n) for all m < n. We prove that f(n)=n·L(n)?1+0(1) for n highly factorable, where L(n)=exp{log n logloglog nloglog n}. This result corrects the 1926 paper of Oppenheim where it is asserted that f(n)=n·L(n)?2+0(1). Some results on the multiplicative structure of highly factorable numbers are proved and a table of them up to 109 is provided. Of independent interest, a new lower bound is established for the function Ψ(x, y), the number of nx free of prime factors exceeding y.  相似文献   

19.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

20.
For each natural number n, let a0(n) = n, and if a0(n),…,ai(n) have already been defined, let ai+1(n) > ai(n) be minimal with (ai+1(n), a0(n) … ai(n)) = 1. Let g(n) be the largest ai(n) not a prime or the square of a prime. We show that g(n) ~ n and that g(n) > n + cn12log(n) for some c > 0. The true order of magnitude of g(n) ? n seems to be connected with the fine distribution of prime numbers. We also show that “most” ai(n) that are not primes or squares of primes are products of two distinct primes. A result of independent interest comes of one of our proofs: For every sufficiently large n there is a prime p < n12 with [np] composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号