共查询到18条相似文献,搜索用时 69 毫秒
1.
双圈图按谱半径的排序 总被引:1,自引:0,他引:1
一个n阶简单连通图G被称为双圈图,如果它的边数是n+1.记B(n)是n阶双圈图的全体.本文确定了B(n)(n≥20)中谱半径的第六大至第十大值和对应的图. 相似文献
2.
3.
4.
顶点数为n,边数为m的简单图G的非负广义邻接矩阵定义为U(G)=γAA(G)+γII(G)+γJJ(G)+γDD(G),其中γA,γI,γJ,γD是一些非负实数,A(G)是图G的邻接矩阵,D(G)=diag(d1,d2,…,dn),I(G)是单位矩阵,J(G)是全1矩阵.本文得到了谱半径ρU(G)的一些界,并刻画了达到这些界时的极图.此外还得到了ρAα(G)的新界以及ρA(G),ρL(G)和ρQ(G)的已知界. 相似文献
5.
图的邻接矩阵的最大特征值称为图的谱半径.对于n≥8,1≤k≤n+23,本文确定了n个顶点和至少有惫个顶点度不少于3的树中具有谱半径最大的树. 相似文献
6.
连通图$G$的距离无符号拉普拉斯矩阵定义为$mathcal{Q}(G)=Tr(G)+D(G)$, 其中$Tr(G)$和$D(G)$分别为连通图$G$的点传输矩阵和距离矩阵. 图$G$的距离无符号拉普拉斯矩阵的最大特征值称为$G$的距离无符号拉普拉斯谱半径. 本文确定了给定点数的双圈图中具有最大的距离无符号拉普拉斯谱半径的图. 相似文献
7.
G是一个无K4-图子式、顶点数为n的简单图,p(G)是图G的谱半径.本文得出一个关于p(G)的上确界:等式成立当且仅当 G ≌K2 (n-2)K1,其中 G1 G2是由 G1∪G2组成、并且G1中的第一个点和G2中的每一个点之间都有一条边相连:(n-2)K1表示(n-2)个孤立点的集合. 相似文献
9.
设U*为一个未定向的n个顶点上的单圈混合图,它是由一个三角形在其某个顶点上附加n-3个悬挂边而获得.在文[Largest eigenvalue of a unicyclic mixed graph,Applied Mathematics A Journal of Chinese Universities(Ser.B),2004,19(2):140-148]中,作者证明了:在相差符号同构意下,在所有n个顶点上的单圈混合图中,U*是唯一的达到最大Laplace谱半径的混合图.本文应用非负矩阵的Perron向量,给出上述结论的一个简单的证明. 相似文献
10.
设$G$为具有$n$个顶点的简单图, $rho_alpha(G)$为其$A_alpha(G)$谱半径.对图$G$的任一顶点$v_i$, 本文给出了$rho_alpha(G)$与$rho_alpha(G-v_i)$之间的关系. 相似文献
11.
在前人对八种变换图研究的基础上,探讨了变换后满足正则性的原图的性质,得到了如下结果:G~( )及G~(---)是正则图当且仅当G是正则图;G~( -)和G~(-- )为正则图的充要条件是G为C_n、K_(2,n-2)或K_4;G~( - )和G~(- -)是正则图当且仅当G为C_5、K_7、K_2、K_(3,3)或G_0;G~(- )和G~( --)是正则的当且仅当G是(n-1)/2-正则图.同时还讨论了变换图的谱半径上界,并对这些上界进行了估计. 相似文献
12.
13.
给定染色数的无符号Laplace谱半径 总被引:2,自引:0,他引:2
设Gkn(k≥2)为n阶的染色数为k的连通图的集合.本文确定了Gkn中具有极大无符号Laplace谱半径的图,即k=2时为完全二部图,k≥3时为Turn图.本文也讨论了Gkn中的具有极小无符号Laplace谱半径的图,对k≤3的情形给出了此类图的刻画. 相似文献
14.
15.
设U*为一个未定向的n个顶点上的单圈混合图,它是由一个三角形在其某个顶点上附加”一3个悬挂边而获得.在文[Largest eigenvalue of aunicyclic mixed graph,Applied Mathematics A Journal of Chinese Universities (Ser.B),2004,19(2):140-J48]中,作者证明了:在相差符号同构意下,在所有n个顶点上的单圈混合图中,U*是唯一的达到最大Laplace谱半径的混合图.本文应用非负矩阵的Perron向量,给出上述结论的一个简单的证明. 相似文献
16.
In this paper,we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices. 相似文献
17.
令G是一个简单连通图,ρ(G)和q~D(G)分别为图G的邻接谱半径和距离无符号拉普拉斯谱半径.提供了图G是哈密顿连通的两个新的谱充分条件,这两个充分条件分别是以ρ(G)和q~D(G)表示的,其中G是G的补图.进一步地,还给出了以q~D(G)表示的图G是从任意一点出发都是可迹的新的谱充分条件,从而扩展和改进了文献中的结果. 相似文献