首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
非奇异H矩阵的充分条件   总被引:23,自引:1,他引:22  
1 引言 设A=(a_(ij))∈C~(n,n),R_i(A)=sum from j≠i to(|a_(ij)|,i,j∈N={1,2,…,n}。若|a_(ij)|≥R_i(A),i∈N,则称A为对角占优矩阵,记为A∈D_0;若不等式中每个不等号都是严格的,则称A为严格对角占优矩阵,记为A∈D。若存在正对角矩阵X,使得AX∈D,则称A为广义严格对角占优矩阵,记为A∈D。  相似文献   

2.
正1引言设A=(a_(ij))∈C~(n×n),N={1,2,…,n}.记R_i(A)= sum |a_(ij)| from j≠i (i∈N),又记N_1=N_1(A)={i∈N:0|a_(ii)|≤R_i(A)},N_2=N_2(A)={i∈N:|a_(ii)R_i(A)}.定义1设A=(a_(ij))∈C~(n×n),如果|a_(ii)|R_i(A)(i∈N),则称A为严格对角占优矩阵.严格对角占优矩阵的集合记为D.如果存在n阶正对角矩阵D使得AD∈D,则称A为广义严格对角占优矩阵.广义严格对角占优矩阵的集合记为D.  相似文献   

3.
非奇异H-矩阵的新判据   总被引:1,自引:0,他引:1  
1引言与记号设A=(a_(ij))∈C~(n×n),记N={1,2,…,n},∧_i(?)∧_i(A)=sum from j≠i|a_(ij)|,S_i(?)S_i(A)=sum from j≠i|a_(ij)|,(?)i,j∈N。若|a_(ij)>∧_i(A),(?)i∈N,则称A为严格对角占优矩阵。  相似文献   

4.
1引言在计算数学、数学物理、控制论与矩阵论中,非奇异H-矩阵是有着重要应用的一类特殊矩阵,有关其数值判定也一直是矩阵计算的重要课题,不少学者对此进行了研究,得到了许多结果,如文[1]-[10]都给出一些比较实用的判别方法.本文另提出了一些新的实用性判别,进一步改进了文[1]的主要结果.用Cn×n表示n阶复矩阵集,设A=(aij)∈Cn×n,记,若|aii|≥Λi(i=1,2,…,n)(本文用Λi表示Λi(A)),则称A为对角占优矩阵;如果每个不等号都为严格成立,则称A为严格对角占优矩阵,记A∈D;若存在正对角阵X,使得AX为严格对角占优矩阵,则称A为广义严格对角占优阵,记A∈D.设A∈Zn×n={(aij)∈Cn×n|aij≤0,i≠j;i,j∈N},若A=sI-B,s>ρ(B),其中B为非负方阵,ρ(B)表示B的谱半径,则称A为非奇异M-矩阵.若A∈Cn×n的比较矩阵M(A)=(mij)为非奇异M-矩阵,则称A为非奇异H-矩阵,其中  相似文献   

5.
连对角占优矩阵的一些性质   总被引:29,自引:3,他引:29  
沈光星 《计算数学》1990,12(2):132-135
设A=(a_(ij))_(n×n)∈C~(n,n),.记Λ_i=sum from (i≠1 j≠i) to n(|a_(ij)|,)i=?,称|a_(ii)|≥Λ_i的行为占优行,|a_(ii)|>Λ_i的行为严格占优行,|a_(ii)|<Λ_i的行为非占优行. 若A为对角占优阵,记为A∈D_0;若A为严格对角占优阵,记为A∈E;若A为不可约对角占优阵,记为A∈F;若A为广义对角占优阵,记为A∈GD_0;若A为广义严格对角占优阵,记为A∈GE.  相似文献   

6.
设A=(a_(ij))_(n×n)为n阶复矩阵,记 σ_i=sum from j=1,j≠i to n(|a_(ij)|,i=l,2,…,n)。若|a_(ij)|>σ_i(i=1,2,…n),则称A为(按行)严格对角占优阵,记为A∈D,若|a_(ii)|·|a_(jj)|>σ_iσ_j(i≠j,i,j=1,2,…,n)则称A为严格对角乘积占优阵,记为A∈D_p(在〔1〕中此类矩阵称为广义对角占优阵,并记为GD)。若存在非奇对角阵Q=diag(q_l,…,q_n)使Q~(-1)AQ∈D,则称A为准严格对角占优阵,记为A∈D′(见〔2〕)。若存在非奇对角阵Q=diag(q_1,…,q_n)使Q~(-1)AQ∈D_p,则称A为准严格对角乘积占优阵。记为A∈D′_p。  相似文献   

7.
矩阵对角占优性的推广及应用   总被引:38,自引:1,他引:37  
§1.引言设 A=(a_(ij))_(n×n)为一复矩阵,若有一正向量 d=(d_1,d_2,…,d_n)~T 使得d_i|a_(ij)|≥sum from j≠1 d_j|a_(ij)|,(1)对每一 i∈N={1,2,…,n}都成立,则称 A 为广义对角占优矩阵,记为 A∈D_0~*;如若(1)式中每一不等号都是严格的,则称 A 为广义严格对角占优矩阵,记为 A∈D~*.特别地,当 d=(1,1,…,1)~T 时,A∈D_0~*及 A∈D~*即是通常的对角占优与严格对角占优,分别记作 A∈D_0及 A∈D.利用矩阵的对角占优性质讨论其特征值分布是矩阵论中的重要课题,文献[5]—[10]给出了这方面的重要结果.n 阶实方阵 A 称为 M-矩阵,如果 A具有形式:A=sI-B,s>ρ(B),其中 B 为 n 阶非负方阵,ρ(B)表 B 之谱半径,利用广义严格对角占优的概念,文[1]给出了 M-矩阵的等价表征:若 n 阶实方阵  相似文献   

8.
广义对角占优矩阵与M—矩阵的判定准则   总被引:27,自引:6,他引:21  
广义对角占优矩阵与M—矩阵是计算数学中应用极其广泛的矩阵类。作者在文[1]中证明若A=(α_(ij))∈C~(n×n)为具有非零元素链对角占优阵或A满足:|α_(ii)‖α_(kk)|>Λ_iΛ_k,i,k∈N={1,…,n},则A为广义对角占优矩阵,detA≠0,揭示了文[3],[4]中detA≠0的共同本  相似文献   

9.
有广义对角占优系数矩阵的齐次线性方程组   总被引:2,自引:0,他引:2  
引言与定义 本文限于考虑无零行零列的n×n,(n>2)复矩阵,我们采用以下记号:N={1,2,…,n};R_i=sum from j∈N-(i)│a_(ij)│;C_i=sum from j∈N-(i)│a_(ij)│;S_i(a)=R_i~HC_i~(1-a),j∈N,a∈[0.1];A∈Z,表示A有全部非正的非对角元的n×n实方阵。  相似文献   

10.
广义严格对角占优阵的判定程序   总被引:3,自引:1,他引:2  
1 引言和符号 在本文中,均采用下列符号而不再重申.恒用N表示前n个自然数的集合;而用Mn(C)和Mn(R)分别表示所有n阶复矩阵和所有n阶实矩阵的集合. Z_N={A|A=(a_(ij))_(n×n)∈Mn(R),a_(ij)≤0,i,j∈N,i≠j},I恒表示单位矩阵. 如果A∈Mn(R)且A的所有元素都为非负实数,则称A为非负方阵,并记为A≥0;若A的所有元素都为正数,则称A为正矩阵,并记为A>0. 对A=(a_(ij))(n×n)∈Mn(C),令A_i(A)=sum from j=1 j≠i to n (|a_(ij)|(i=1、2…… n)) ;若把A的非零元用1代替 而得到—个n阶(0,1)矩阵。称为A的导出矩阵。记为;而把A的比较矩阵记为 u(A)=(b_(ij))_(n×n))其中b_(ij)=|a_(ij)|,b_(ij)=-|a_(ij)|(i,j∈N i≠j)  相似文献   

11.
研究了非奇H-矩阵的判定问题.先给出了几个判定严格α-双链对角占优矩阵的充要条件,进一步利用矩阵对角占优理论得到了判定非奇H-矩阵的一些充分条件,推广和改进了已有的相关结果,并用数值算例说明了这些判定方法的有效性.  相似文献   

12.
文章通过引进一类具有非零元素链的矩阵,利用α对角占优矩阵性质,给出了一个新的非奇H矩阵的充分条件,扩大了非奇H矩阵的判定范围.  相似文献   

13.
广义对角占优矩阵的充分条件   总被引:2,自引:0,他引:2  
丁碧文  刘建州 《数学研究》2005,38(4):422-427
给出了一类局部双对角占优矩阵,进而获得了几个新的广义对角占优矩阵的充分条件.  相似文献   

14.
利用α2-双对角占优理论,给出了几个判定非奇异H-矩阵的充分条件,扩大了非奇异H-矩阵的判定范围,并给出了相应的数值算例说明结果的有效性.  相似文献   

15.
It is known that the diagonal-Schur complements of strictly diagonally dominant matrices are strictly diagonally dominant matrices [J.Z. Liu, Y.Q. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004) 365-380], and the same is true for nonsingular H-matrices [J.Z. Liu, J.C. Li, Z.T. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Algebra Appl. 428 (2008) 1009-1030]. In this paper, we research the properties on diagonal-Schur complements of block diagonally dominant matrices and prove that the diagonal-Schur complements of block strictly diagonally dominant matrices are block strictly diagonally dominant matrices, and the same holds for generalized block strictly diagonally dominant matrices.  相似文献   

16.
本文研究对角占优矩阵奇异-非奇异的充分必要条件.基于Taussky定理,本文得出,可约对角占优矩阵的奇异性由其独立Frobenius块的奇异性决定,从而将这一问题化为不可约对角占优矩阵的奇异-非奇异性问题;运用Taussky定理研究奇异不可约对角占优矩阵的相似性和酉相似性,获得这类矩阵元素辐角间的关系;并与Taussky定理给出的这类矩阵元素模之间的关系结合在一起,研究不可约对角占优矩阵奇异的充分必要条件;最后给出不可约对角占优矩阵奇异-非奇异性的判定方法.  相似文献   

17.
The inverse eigenvalue problem is about how to construct a desired matrix whose spectrum is the given number set. In this paper, in view of the Givens matrices, we prove that there exist three classes of full H-matrices which include strictly diagonally dominant full matrix, $\alpha$-strictly diagonally dominant full matrix and $\alpha$-double strictly diagonally dominant full matrix, and their spectrum are all the given number set. In addition, we design some numerical algorithms to explain how to construct the above-mentioned full H-matrices.  相似文献   

18.
给出了判定非广义对角占优矩阵的充要条件,从理论上彻底解决了不可约非广义对角占优矩阵的判定问题,并给出了判定不可约非广义对角占优矩阵的具体算法.  相似文献   

19.
广义严格对角占优矩阵的充分条件   总被引:1,自引:0,他引:1  
1 引言 广义严格对角占优矩阵是一类在数值代数、数学物理和控制论等领域有着广泛应用的特殊矩阵,例如:线性方程组Ax=b,当系数矩阵A为广义严格对角占优矩阵时,许多经典的迭代算法均是收敛的,同时对目前提出的一些修正算法也是收敛的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号