首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
The present work deals with the design of structure-preserving numerical methods in the field of nonlinear elastodynamics and structural dynamics. Structure-preserving schemes such as energy-momentum consistent (EMC) methods are known to exhibit superior numerical stability and robustness. Most of the previously developed schemes are relying on a displacement-based variational formulation of the underlying mechanical model. In contrast to that we present a mixed variational framework for the systematic design of EMC schemes. The newly proposed mixed approach accomodates high-performance mixed finite elements such as the shell element due to Wagner & Gruttmann [1] and the brick element due to Kasper & Taylor [2]. Accordingly, the proposed approach makes possible the structure-preserving extension to the dynamic regime of those high-performance elements. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
Degenerated shell elements were found to be attractive in solving homogeneous shell problems. Direct extension of the same to layered shells becomes computationally inefficient as, in the computation of element matrices, 3-D numerical integration in each layer and summation over the layers have to be carried out. In order to make the formulation efficient, explicit through-thickness schemes have been devised for linear problems. The present paper deals with the extension of the same to geometric nonlinear problems with options of small and large rotations. The explicit through-thickness integration becomes possible due to the assumption on the variation of inverse Jacobian through the thickness. Depending on the assumptions, three different schemes under large and small rotation cases have been presented and their relative numerical accuracy and computational efficiency have been evaluated. It has been observed that there is no sacrifice on the numerical accuracy due to the assumptions leading to the explicit through-thickness integration, but at the same time, there is considerable saving in the computational time. The computational efficiency improves as the number of layers in the laminate increases. The small rotation formulation with the assumption of linear variation of Jacobian inverse across the thickness and based on further approximation regarding certain submatrices is seen to be computationally efficient, as applied to geometric nonlinear layered shell problems.  相似文献   

4.
Starting from relaxation schemes for hyperbolic conservation laws we derive continuous and discrete schemes for optimization problems subject to nonlinear, scalar hyperbolic conservation laws. We discuss properties of first- and second-order discrete schemes and show their relations to existing results. In particular, we introduce first and second-order relaxation and relaxed schemes for both adjoint and forward equations. We give numerical results including tracking type problems with non-smooth desired states.  相似文献   

5.
The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes with parallel nature which are pure alternative segment explicit-implicit(PASE-I) and implicit-explicit(PASI-E) schemes. It also gives the existence and uniqueness,the stability and the error estimate of numerical solutions for the parallel difference schemes. Theoretical analysis demonstrates that PASE-I and PASI-E schemes have obvious parallelism, unconditionally stability and second-order convergence in both space and time. The numerical experiments verify that the calculation accuracy of PASE-I and PASI-E schemes are better than that of the existing alternating segment Crank-Nicolson scheme, alternating segment explicit-implicit and implicit-explicit schemes. The speedup of PASE-I scheme is 9.89, compared to classical Crank-Nicolson scheme. Thus the schemes given by this paper are high efficient and practical for solving the nonlinear Leland equation.  相似文献   

6.
The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of nonlinear evolution partial differential equations. In this paper, a class of high-order nonlinear Galerkin methods are provided. Moreover, convergence results with high-order spectral accuracy are derived for the schemes introduced.  相似文献   

7.
We consider several synchronous and asynchronous multisplitting iteration schemes for solving aclass of nonlinear complementarity problems with the system matrix being an H-matrix.We establish theconvergence theorems for the schemes.The numerical experiments show that the schemes are efficient forsolving the class of nonlinear complementarity problems.  相似文献   

8.
Summary. Two block monotone iterative schemes for a nonlinear algebraic system, which is a finite difference approximation of a nonlinear elliptic boundary-value problem, are presented and are shown to converge monotonically either from above or from below to a solution of the system. This monotone convergence result yields a computational algorithm for numerical solutions as well as an existence-comparison theorem of the system, including a sufficient condition for the uniqueness of the solution. An advantage of the block iterative schemes is that the Thomas algorithm can be used to compute numerical solutions of the sequence of iterations in the same fashion as for one-dimensional problems. The block iterative schemes are compared with the point monotone iterative schemes of Picard, Jacobi and Gauss-Seidel, and various theoretical comparison results among these monotone iterative schemes are given. These comparison results demonstrate that the sequence of iterations from the block iterative schemes converges faster than the corresponding sequence given by the point iterative schemes. Application of the iterative schemes is given to a logistic model problem in ecology and numerical ressults for a test problem with known analytical solution are given. Received August 1, 1993 / Revised version received November 7, 1994  相似文献   

9.
The basic geometric and physical relations and resolving equations of the theory of thin and nonthin orthotropic composite shells with account of nonlinear properties and low shear rigidity of their materials are presented. They are derived based on two theories, namely the theory of anisotropic shells employing the Timoshenko or Kirchhoff-Love hypothesis and the nonlinear theory of elasticity and plasticity of anisotropic media in combination with the Lagrange variational principle. The procedure and algorithm for the numerical solution of nonlinear (linear) problems are based on the method of successive approximations, the difference-variational method, and the Lagrange multiplier method. Calculations of the stress-strain state for a spherical shell with a circular opening loaded with internal pressure are presented. The effect of transverse shear strains and physical nonlinearity of the material on the distribution of maximum deflections and circumferential stresses in the shell, obtained according to two variants of the shell theories, is studied. A comparison of the results of the problem solution in linear and nonlinear statements with and without account of the shell shear strains is given. The numerical data obtained for thin and nonthin (medium thick) composite shells are analyzed.  相似文献   

10.
将不可压缩的广义neo-Hookean材料组成的超弹性圆柱壳径向对称运动的数学模型归结为一类非线性发展方程组的初边值问题.利用材料的不可压缩条件和边界条件求得了描述圆柱壳内表面径向运动的二阶非线性常微分方程.给出了微分方程的周期解(即圆柱壳的内表面产生非线性周期振动)的存在条件,讨论了材料参数和结构参数对方程的周期解的影响,并给出了相应的数值模拟.  相似文献   

11.
We construct monotone numerical schemes for a class of nonlinear PDE for elliptic and initial value problems for parabolic problems. The elliptic part is closely connected to a linear elliptic operator, which we discretize by monotone schemes, and solve the nonlinear problem by iteration. We assume that the elliptic differential operator is in the divergence form, with measurable coefficients satisfying the strict ellipticity condition, and that the right-hand side is a positive Radon measure. The numerical schemes are not derived from finite difference operators approximating differential operators, but rather from a general principle which ensures the convergence of approximate solutions. The main feature of these schemes is that they possess stencils stretching far from basic grid-rectangles, thus leading to system matrices which are related to M-matrices.  相似文献   

12.
Partial differential equations with possibly discontinuous coefficients play an important part in engineering, physics and ecology. In this paper, we will study nonlinear partial differential equations with variable coefficients arising from population models. Generally speaking, it is difficult to analyze the behavior of nonlinear partial differential equations; therefore, we usually rely on the numerical approximation. Currently, there is an increasing interest in designing numerical schemes that preserve energy properties for differential equations. We will design the numerical schemes that preserve discrete energy property and show numerical experiments for a nonlinear partial differential equation with variable coefficients.  相似文献   

13.
Alexander Janz  Peter Betsch 《PAMM》2015,15(1):205-206
In the present paper we consider structure-preserving integration methods in the context of mixed finite elements. The used low-order mixed finite elements typically exhibit improved coarse mesh accuracy. On the other hand energy-momentum (EM) consistent time-stepping schemes have been developed in the realm of nonlinear structural dynamics to enhance the numerical stability properties. EM schemes typically exhibit superior robustness and thus offer the possibility to use large time steps while still producing physically meaningful results. Accordingly, combining mixed finite element discretizations in space with EM consistent discretizations in time shows great promise for the design of numerical methods with superior coarse mesh accuracy in space and time. Starting with a general Hu-Washizu-type variational formulation we develop a second-order accurate structure-preserving integration scheme. The present approach is applicable to a large number of mixed finite element formulations. As sample application we deal with a specific mixed shell element. Numerical examples dealing with large deformations will show the improved coarse mesh accuracy in space and time of the advocated approach. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
二维非线性对流扩散方程的非振荡特征差分方法   总被引:15,自引:0,他引:15  
由同顺 《计算数学》2000,22(2):159-166
1.引言 近十几年来,双曲守恒律问题的高分辨率格式已取得很大发展,具有局部自适应选取节点的非振荡插值算法(如 UNO[1], ENO[2]等)在这些格式的构造中起着重要的作用.特征差分法是求解对流扩散问题的一种较为有效方法,但在求解具有陡峭前线问题时,也会产生非物理振荡阻(见4).本文将把特征差分法与非振荡插值算法相结合构造对流扩散问题的高分辨率差分格式. [1]中的 UNO及[2]中的 ENO插值都是一维的,有关讨论二维 UNO及ENO插值的文章还不多见,本文将构造二维基于六节点的二次非振荡插值以及…  相似文献   

15.
本文讨论了数值求解二维非线性Schr\"{o}dinger方程周期边值问题的Du Fort-Frankel格式和蛙跳格式. 以解函数的一个广义时间导数作为独立变量, 将非线性方程初边值问题改写成一个混合方程组形式, 应用我们最新提出的离散能量技巧讨论这两个三层显式格式的收敛性. 分析表明, 在必要的网格条件下, 差分解在最大模意义下二阶收敛. 数值算例验证了理论分析结果.  相似文献   

16.
This paper is devoted to multiresolution schemes that use a stencil selection procedure in order to obtain adaptation to the presence of edges in the images. Since non adapted schemes, based on a centered stencil, are less affected by the presence of texture, we propose the introduction of some weight that leads to a more frequent use of the centered stencil in regions without edges. In these regions the different stencils have similar weights and therefore the selection becomes an ill-posed problem with high risk of instabilities. In particular, numerical artifacts appear in the decompressed images. Our attention is centered in ENO schemes, but similar ideas can be developed for other multiresolution schemes. A nonlinear multiresolution scheme corresponding to a nonlinear interpolatory technique is analyzed. It is based on a modification of classical ENO schemes. As the original ENO stencil selection, our algorithm chooses the stencil within a region of smoothness of the interpolated function if the jump discontinuity is sufficiently big. The scheme is tested, allowing to compare its performances with other linear and nonlinear schemes. The algorithm gives results that are at least competitive in all the analyzed cases. The problems of the original ENO interpolation with the texture of real images seem solved in our numerical experiments. Our modified ENO multiresolution will lead to a reconstructed image free of numerical artifacts or blurred regions, obtaining similar results than WENO schemes. Similar ideas can be used in multiresolution schemes based in other stencil selection algorithms.   相似文献   

17.
ABSTRACT

A bi-parametric family of iterative schemes for solving nonlinear systems is presented. We prove for any value of parameters the sixth-order of convergence of any members of the class. The efficiency and computational efficiency indices are studied for this family and compared with that of the other known schemes with similar structure. In the numerical section, we solve, after discretizating, the nonlinear boundary problem described by the Fisher's equation. This numerical example confirms the theoretical results and show the performance of the proposed schemes.  相似文献   

18.
Interest in calculating numerical solutions of a highly nonlinear parabolic partial differential equation with fractional power diffusion and dissipative terms motivated our investigation of a heat equation having a square root nonlinear reaction term. The original equation occurs in the study of plasma behavior in fusion physics. We begin by examining the numerical behavior of the ordinary differential equation obtained by dropping the diffusion term. The results from this simpler case are then used to construct nonstandard finite difference schemes for the partial differential equation. A variety of numerical results are obtained and analyzed, along with a comparison to the numerics of both standard and several nonstandard schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

19.
本文考虑了一类非线性伪抛物型方程的Fourier伪谱方法,建立了该方程的Fourier伪谱方法的半离散格式和全离散格式.并利用Sobolev空间的正交映射理论,给出了这两种格式的误差估计.最后针对全离散格式给出了数值算例,数值结果表明Fourier伪谱格式能正确加解密,且计算误差较小,效率较高,具有较好的稳定性,可用于提高热流密码体制的加解密效率.  相似文献   

20.
1.IntroductionManyimportantdifferentialequationsofevolutiontypeinphysicsandmechanicshavespecificgeometricstructure.Forinstance,theHamiltoniansystemsinclassicalmechanics,theSchrodingerequationinquantum,theKorteweg-deVriesandKleinGordonequationsofnonli...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号