首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 417 毫秒
1.
以可溶性淀粉为原料,N,N'-亚甲基双丙烯酰胺(MBAA)和环氧氯丙烷(ECH)为交联剂,采用反相乳液聚合法制备了淀粉聚合物微球,以微球的平均粒径和溶胀度为指标,考察了不同因素对微球合成的影响.利用粒度分析仪、扫描电镜、红外光谱等对产物进行了表征.结果表明:引发剂用量、交联剂用量、油水相体积比及反应时间等因素对微球的平均粒径和溶胀度均有影响,其中MBAA用量和油水比的影响较大.所得微球粒度分布范围较窄,球形圆整,表面粗糙多孔,可用作良好的药物载体和吸附剂.  相似文献   

2.
以可溶性淀粉为主要原料,N,N’-亚甲基双丙烯酰胺(MBAA)为制备反应的交联剂,环己烷为油相,过硫酸钾-亚硫酸氢钠(K_2S_2O_8-Na HSO_3)氧化还原体系为引发剂,Span80、Tween60为乳化剂,采用反向悬浮法制备交联淀粉微球,并利用红外光谱仪对交联淀粉微球的结构进行表征。以交联淀粉微球作为吸附剂,研究了吸附时间、淀粉微球的质量及Cr(Ⅵ)的初始浓度对Cr(Ⅵ)的吸附性能的影响并考察了淀粉微球吸附Cr(Ⅵ)的热力学特性。吸附实验发现,在淀粉微球质量为0.05 g、吸附时间为70 min、初始浓度为50 mg/L时交联淀粉微球对Cr(Ⅵ)的吸附量较高。热力学实验表明,交联淀粉微球对Cr(Ⅵ)吸附行为符合Langmuir热力学方程,相关系数为0.989 0。  相似文献   

3.
以可溶性淀粉为原料,环己烷和水构成反相悬浮体系,Span60和Tween60为复配乳化剂,N,N'-亚甲基双丙烯酰胺(MBAA)为交联剂,采用反相悬浮聚合法合成中性淀粉微球,再用醚化剂GTA与中性淀粉微球反应,制得阳离子淀粉微球.以微球的平均粒径和溶胀度为指标,分析了不同因素对微球合成的影响.运用红外光谱、扫描电镜、粒度分析仪对产物进行了表征分析.实验结果表明,该阳离子淀粉微球结构致密、强度高,平均粒径为15.2μm,并接枝有季胺盐阳离子基团,可作为一种良好吸附载体.  相似文献   

4.
以红薯粉为原料、Span 60与Tween 60为乳化剂、N,N-亚甲基双丙烯酰胺(MBAA)为交联剂,采用反相乳化交联法制备淀粉微球,用红外光谱仪(FT-IR)、扫描电镜(SEM)及比表面积和孔径分析仪对其进行表征和分析,并对模拟Cu~(2+)污水进行吸附测试,探寻最佳吸附条件,并将最优吸附条件应用于西安汉城湖水样的Cu~(2+)吸附测试。研究发现,制备的红薯淀粉微球的结构良好,且当淀粉微球投入浓度为0.12 g·m L-1、吸附时间为45 min时,吸附效果最佳;汉城湖水样测试显示,Cu~(2+)去除率达到82.45%。  相似文献   

5.
以梧桐树叶为原料,接枝丙烯酸和丙烯酰胺,N,N'-亚甲基双丙烯酰胺(MBAA)为交联剂,采用反相乳液聚合方法制备具有立体网状结构的高吸水性树脂.通过单因素实验研究制备条件对树脂吸水倍率的影响,并利用扫描电镜产物进行了表征.研究了单体用量、分散剂用量、油水比等对树脂性能的影响.从而制定出最佳合成方案.  相似文献   

6.
以玉米淀粉-环糊精为原料采用反相乳液聚合法合成复合淀粉微球.利用IR和DSC袁征淀粉微球的结构,探讨了淀粉交联成球反应机理,通过溶胀法测其交联度,选取有机色素胭脂红及无机碱土金属钙离子为吸附对象进行吸附实验,并测试微球的吸附性能.  相似文献   

7.
王丽娟  刘峥  王莉 《材料导报》2007,21(9):153-156
提出了一步包埋法(无需表面活性剂)磁性交联双醛淀粉微球,并对其结构、性能进行了测试和表征.以木薯淀粉为原料,高碘酸钠为氧化剂,采用包埋法制备磁性交联双醛淀粉微球,并利用正交实验确定其最佳制备条件为:淀粉用量3.0g,搅拌速度1200r/min,氧化时间2h,氧化温度40℃,高碘酸钠浓度10mmol/L且质量与淀粉用量相当,Fe3 与Fe2 摩尔比为1∶1.经结构表征及性能测试表明,磁性交联双醛淀粉微球醛基平均含量为3.0537mmol/g,Fe3O4%为62.73%,粒径小,耐酸性能良好,具有核壳式结构,为该微球作为靶向药物的载体奠定了良好的基础.  相似文献   

8.
为获得光子晶体用单分散性较好、表面光滑的SiO2球形颗粒.对传统Stober法进行改进,分析了氨水和正硅酸乙酯(TEOS)浓度对SiO2微球粒径的影响,提出了单分散SiO2微球的形成机理,利用X射线衍射分析仪(XRD)和场发射扫描电子显微镜(SEM)对样品结构和形貌进行了表征.XRD分析表明,合成的SiO2微球为无定形态;SEM照片显示SiO2微球粒径在292~750nm范围内,微球粒径偏差均在5%以下.  相似文献   

9.
以煤油为连续相,50.0wt%N-羟甲基丙烯酰胺(N-MAM)、丙烯酰胺(AM)单体水溶液为分散相,Span80/OP-10为乳化剂,依据拟三元相图配制了含50.6wt%油相、42.0wt%水相、7.4wt%Span80/OP-10(质量比6∶1)乳化剂相的W/O微乳液(质量分数)。以N,N-亚甲基双丙烯酰胺(MBAA)为交联剂,在65℃过硫酸铵(APS)引发下进行反相微乳液聚合制备了纳米级交联P(AM/NMAM)微球。以微球粒径及溶胀性为考察指标,从单体配比、交联剂用量、引发剂用量及搅拌速率等方面对合成条件进行了优化。结果表明,在单体配比m(AM)∶m(N-MAM)为4∶1,交联剂MBAA用量0.60wt%、引发剂APS用量0.50wt%(以单体总质量计)、搅拌速率1000r/min的条件下合成的微球耐盐性好、吸水倍率高,在1.0×10~5 mg/L模拟地层水中可达18.40g/g。扫描电子显微镜(SEM)、透射电子显微镜(TEM)对微球形态的表征结果显示,其具有较好的球形度及单分散性,粒径分布均一,约为100nm左右。流变及岩心封堵实验表明微球胶乳具有良好的注入性,封堵效果显著,可实现逐级深部调剖。  相似文献   

10.
以可溶性玉米淀粉为原料,N,N'-亚甲基双丙烯酰胺为交联剂,采用反相悬浮聚合法,合成了一种淀粉基材料-淀粉微球(CSM).研究了淀粉基材料-淀粉微球(CSM)对苯胺的吸附行为,并根据吸附等温线研究了其吸附热力学性质,并利用红外光谱、X射线衍射仪对淀粉微球及其吸附产物结构进行了表征,初步探讨吸附机理.结果表明:在研究范围内,CSM对苯胺的吸附行为同时符合Langmuir方程和Freundlich方程;等温吸附线和热力学计算结果都显示CSM对苯胺的吸附是一个自发、放热过程,主要通过物理方式吸附.  相似文献   

11.
Preparation of starch microspheres using epichlorohydrin is a time consuming method and requires around 18 hr for cross-linking reaction. To reduce reaction time, terbutaline sulfate (TBS) loaded degradable starch microspheres (DSM) were prepared using formaldehyde as the cross-linking agent. All microspheres were spherical in shape and had a porous, rough surface with a mean particle size of 18-24 microm. Whatever the cross-linking time, it was seen that the release of the TBS was not complete during the release experiments. The influence of enzyme on the degradation of microspheres was moderate. Following intravenous administration, initial uptake of microspheres by the lung was higher than those of other organs.  相似文献   

12.
ABSTRACT

Preparation of starch microspheres using epichlorohydrin is a time consuming method and requires around 18 hr for cross-linking reaction. To reduce reaction time, terbutaline sulfate (TBS) loaded degradable starch microspheres (DSM) were prepared using formaldehyde as the cross-linking agent. All microspheres were spherical in shape and had a porous, rough surface with a mean particle size of 18–24 μm. Whatever the cross-linking time, it was seen that the release of the TBS was not complete during the release experiments. The influence of enzyme on the degradation of microspheres was moderate. Following intravenous administration, initial uptake of microspheres by the lung was higher than those of other organs.  相似文献   

13.
Manufacturing processes for syntactic foams made of hollow microspheres and starch were studied. Various manufacturing parameters in relation to the “buoyancy method” were identified and inter-related. An equation based on unit-cell models with the minimum inter-microsphere distance concept for a relation between volume expansion rate of bulk microspheres in aqueous starch and microsphere size was derived and successfully used to predict experimental data. It was demonstrated that the inter-microsphere distance can be calculated numerically for microspheres with known statistical data. The equation relating between volume expansion rate and microsphere size was further extended to accommodate a relation between inter-microsphere distance and microsphere size but with limited accuracy for binders of low starch content. An alternative empirical linear equation for the relation between inter-microsphere distance and microsphere size is proposed for wider applications. A simple method for estimation of syntactic foam density prior to completion of manufacture is suggested. Shrinkage after molding of syntactic foam is discussed in relation with different stages such as slurry, dough and solid. A two-step manufacturing process involving molding and then forming is suggested for syntactic foam dimensional control.  相似文献   

14.
阴离子型淀粉微球的制备研究   总被引:8,自引:2,他引:6  
本文先以可溶性淀粉为原料,以表氯醇为交联剂,采用逆相悬浮交联聚合法制得中性淀粉微球,然后用Na3P3O9作交联剂进行第二次交联和阴离子化,制得阴离子型淀粉微球。分析了不同因素对中性淀粉微球的粒径及其分布的影响,优化了制备的工艺条件。对产品的物理化学性质进行了表征。实验结果表明:此制备工艺稳定,有良好的应用研究前景。  相似文献   

15.
Microspheres are potential candidates for the protein drug delivery. In this work, we prepared polymer-coated starch/bovine serum albumin (BSA) microspheres using co-axial electrohydrodynamic atomization (CEHDA). First, starch solution in dimethyl sulphoxide (DMSO) was prepared and then an aqueous solution of BSA was added to it to make a starch-BSA solution. Subsequently, this solution was made to flow through the inner capillary, while the polymer, polydimethylsiloxane (PDMS), flowed through the outer capillary. On collection, filtration and subsequent drying, near-monodisperse microspheres of 5-6microm in size were obtained. The microspheres were characterized by Fourier-transform infrared (FT-IR) spectroscopy and scanning electron microscopy. Cumulative BSA release was investigated by UV spectroscopy. BSA structure and activity was preserved in the microspheres and its release in 0.01M phosphate buffered saline (PBS) was studied over a period of 8 days. There was an initial burst with 32wt% of total BSA released in 2h. Overall 75wt% of BSA was released over a 7 day period.  相似文献   

16.
Solid insulin formulations obtained by different methods of preparation were compared with respect to chemical stability and morphology. Spray- and freeze-drying, solution enhanced dispersion by supercritical fluids (SEDS) and precipitation into starch microspheres were the methods used for preparation of solid powders. The excipients applied were melezitose, starch, and sodium taurocholate. The stability of the samples was evaluated after storage in open containers at 25°C and 30% RH for 6 months.

All samples were amorphous after processing and storage as detected by XRD, except for the starch microspheres which were semi-crystalline. The spray- and freeze-dried samples containing melezitose and sodium taurocholate experienced a significant water uptake during storage, resulting in changes in morphology and disappearance of Tg. However, the chemical stability of these samples did not seem to be affected by the water uptake. Changes in morphology were not observed for the SEDS powders and the starch microspheres.

The chemical stability of the samples was assessed by HPLC. In general, conventional spray- and freeze drying resulted in samples with higher chemical stability compared to SEDS powders and starch microspheres. Nevertheless, the excipients applied were observed to be of major importance, and further optimization of the formulation as well as processing conditions may lead to slightly different conclusions.  相似文献   

17.
采用沉淀共聚合方法制备了聚乙烯基硅氮烷腈(PVSZ)微球。其中乙烯基环硅氮烷与二乙烯基苯为共单体,偶氮二异丁腈(AIBN)为引发剂,乙腈为溶剂。聚合反应12h制备的微球表面光滑,粒径为700 nm~780 nm,分散性良好。能量色谱(EDS)证明微球包含Si、C、N元素;红外光谱(FT-IR)表明微球化学结构是PVSZ;微球1000℃热解,陶瓷产率为35%。热解温度低于1300℃时,PVSZ微球的热解产物能完整地保持球形结构、表面光滑;X射线衍射(XRD)表明产物呈非晶态;热解温度1500℃时,球形结构破坏,产物结晶,生成了Si3N4晶粒。  相似文献   

18.
Using a reverse-phase microemulsion polymerization method and an encapsulating method, polyoxometalates (POMs) K6SiW11TiO40 incorporating starch microspheres have been prepared and structurally characterized by elemental analyses, IR, UV-vis, and NMR spectroscopy. The size of SiW11TiO40/starch particles is about 40-60 nm. The polyoxometalate encapsulated by a starch microsphere retains the parent structure. The starch microsphere is a good carrier, as it is able to enhance the antitumoral activity of POMs and decrease the toxicity of POMs as well.  相似文献   

19.
Microsphere size is a primary determinant of solute release velocity. We present here a rational way for producing PLGA microspheres with different and controlled sizes. The following process variables were studied: Stirring velocity during the second emulsion step, dispersed and continuous phases volume ratio, and poly(vinyl alcohol) concentration in the continuous phase. A full factorial experimental design 2(3) with triplicate at the central point was used to determine the influence of variables on PLGA microsphere mean size. The stirring velocity and poly(vinyl alcohol) concentration were the main variables at 0.95 significance level. An influence of PVA and stirring velocity on microspheres size is observed, there is no correlation for DP/CP volume ratio on size of microspheres. By combining the two variables--the stirring velocity and poly(vinyl alcohol) concentration, the surface response was analyzed. The increase of poly(vinyl alcohol) concentration with concomitant increase on stirring velocity produced microspheres with the lower sized. In contrast the lower poly(vinyl alcohol) concentration and the lower stirring velocity used produced the higher microspheres sized. Uniformly spherical and smooth microspheres (4-15 microm of diameter) were obtained. No significant difference was observed on Ponca S loading within the experimental region. Our results open the possibility of formulating PLGA microspheres with custom sizes performing a minimum of experiments as required for specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号