首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
传统谐波分析由于很难达到同步采样和整周期截断,给谐波参数的计算带来不可避免的误差,加窗插值算法可以改善由非同步采样带来的频谱泄露和栅栏效应,依据快速傅里叶变换理论,采用双谱线加窗插值FFT算法对间谐波参数进行估计,并给出了Nuttall窗的间谐波频率、相位和幅值的插值修正公式.通过对模拟谐波信号的仿真发现,该算法能够在对信号谐波准确分析的基础上实现对间谐波的精确检测,并且比其它对比窗函数具有更高的精确度.  相似文献   

2.
直接采用快速傅立叶变换(FFT)方法进行谐波分析无法避免栅栏效应和频谱泄漏现象,不能获得准确的各次谐波参数.为此,针对谐波检测的加窗傅里叶变换进行研究,应用插值算法对窗傅里叶变换进行改进,提出一种基于逐幅谐波消去法的插值.理论分析和仿真表明,该改进算法可有效地减少泄漏,降低噪声的干扰,精确地获得各次谐波的幅值和相位.  相似文献   

3.
应用插值FFT算法精确估计电网谐波参数   总被引:51,自引:3,他引:51  
深入研究了插值快速傅里叶变换(FFT)算法在电网谐波参数估计中的应用。加窗宽度和窗函数的类型是影响插值FFT算法分析精度的主要因素。通过对常用窗函数的特性分析,得出了加窗宽度关于分析精度的估计公式。电网信号的基波幅值远大于各次谐波幅值,分析表明,Hanning窗比较适合分析电网信号,同时给出了基于Hanning窗的电网谐波幅值、频率和相位的显式计算公式。仿真结果证明,应用上述分析结果,电网谐波幅度、频率和相位的估计达到了预期的分析精度。  相似文献   

4.
针对稳定状态下的电能质量信号,采用一种组合余弦窗的汉宁窗,将该窗函数与快速傅里叶变换相结合进行电能质量中的谐波分析,并利用Matlab7.0进行仿真验证,发现将窗函数与快速傅里叶变换相结合,在很大程度上能减少谐波泄漏,有效减弱谐波之间的干扰,有利于测量到较为精确的电能信号的幅值和相位.  相似文献   

5.
针对基于快速傅里叶变换(FFT)的传统谐波分析法测电力电容器介质损耗因数(tanδ)时会由于非同步采样和非整周期截断造成频谱泄露和栏栅效应的问题,依据凯瑟(Kaiser)窗函数主瓣和旁瓣衰减比例自由选择的特性,采用基于凯瑟窗的相位校正的改进谐波算法测量电力电容器介质损耗因数.在电网基波频率变化、介损角真值发生变化以及白噪声干扰等3种条件下,仿真分析该算法和基于Hanning窗、Blackman窗的插值算法的测量误差,并通过实验进行验证.结果表明,该算法与Hanning窗和Blackman窗插值算法相比能更有效地克服基波频率波动及白噪声等对电力电容器tanδ测量的影响.基于Kaiser窗函数的改进谐波算法抑制频谱泄漏效果好,准确度高,满足电力电容器介质损耗因数tanδ在线监测的要求.  相似文献   

6.
一种基于加窗的插值FFT重构Hilbert变换方法   总被引:1,自引:0,他引:1  
提出了一种基于加窗的插值FFT算法重构Hilbert变换来测量无功功率的方法。该方法通过离散傅里叶变换及逆变换,能够准确地将各次谐波的电压进行90°移相,并利用加海明窗的插值FFT算法对各次谐波的频率、相位,以及幅值进行计算,克服频谱泄露所带来的影响,消除测量时产生的误差。仿真结果表明该方法具有很高的测量精度。  相似文献   

7.
针对在采用快速傅里叶变换分析电力谐波时,对信号非同步采样以及非整周期截断的情况下,会产生频谱泄露和栅栏效应,无法有效检测谐波的各参数值等问题,提出了加窗插值算法,能够提高计算精度抑制频谱泄露,Kaiser窗的频带内能量主要集中在主瓣中,拥有绝佳的旁瓣抑制性能,该算法充分利用峰值谱线频点最近的四条谱线进行加权运算提高运算精度,运用MATLAB多项式拟合推导出实用的插值修正公式。仿真结果表明,四谱线插值算法得到的21次谐波的幅值相对误差≤0.000 01%,相位相对误差≤0.000 001%,基波频率计算相对误差为6.2×10-11%,并且能够有效消除频谱泄露和栅栏效应的影响,计算精度更高。  相似文献   

8.
为了提高电力系统频率计算的精度,提出了一种基于加四项Nuttall窗递推DFT插值算法的高精度测频方法.由于四项余弦窗的能量更集中在主瓣,旁瓣非常小,因此加四项余弦窗FFT插值算法能极大地减小频谱泄漏的影响,谱间干扰很小,能较好地减小频谱泄漏和谐波等给频率测量带来的干扰,且该方法采用的频率偏移量计算公式简单.为了减小加四项余弦窗FFT的计算量,采用加四项余弦窗递推DFT的方法对传统方法进行了改进,有效减小了算法的计算量,提高了频率的计算精度.仿真计算结果验证了所提算法的计算精度.  相似文献   

9.
谐波参数的准确估计是微电网谐波治理的基础和依据,微电网频率偏移大,信噪比低,采用常规傅里叶算法测量谐波误差大。提出基于Nuttall窗离散傅里叶变换(DFT)校正的谐波检测算法。首先,对采样数据加Nuttall窗,利用Nuttall窗旁瓣低且衰减快的特点抑制各频率成分间的频谱干扰;其次,采用DFT校正算法估计谐波频率、幅值、相位等参数,减小频谱泄露引起的谐波测量误差;最后,对微电网较大频率偏差和较低信噪比的情况下,对所提方法进行仿真分析。仿真结果表明,所提算法能有效抑制同步采样误差对谐波测量的影响,可显著提高微电网谐波测量的精确性。  相似文献   

10.
在电力系统谐波检测中,使用快速傅里叶变换法(FFT)可以得到平稳谐波信号中的频谱,从而可以确定该信号中谐波的频率和幅值等信息.但FFT局限于得到信号的频域信息,很难检测到谐波发生的具体时刻,而小波变换可以捕捉到信号中的细节部分.针对复杂谐波信号,提出了一种将快速傅里叶变换和小波变换相结合的检测方法.由Matlab仿真结果可知,该方法可以检测稳态谐波,确定暂态谐波的突变时刻.  相似文献   

11.
在电力系统中,间谐波检测是抑制间谐波的重要环节,准确有效地确定信号中的间谐波分量,对于改善电能质量有重要意义.FFT能够实现整数次谐波检测,对于非整数次谐波的检测存在着频率泄漏和栅栏效应,而MUSIC法需要在整个频域内进行谱峰搜索,影响其实用性.本文将FFT和MUSIC算法相结合,利用FFT缩小搜索域,再利用MUSIC进行频率细化,即克服了FFT的频率泄漏和栅栏现象,同时缩短谱峰搜索时间,可以更有效地估计出间谐波的频率,仿真试验说明了此方法的有效性及频率估计的精确度.  相似文献   

12.
Hilbert-Huang变换应用中的预处理方法研究   总被引:3,自引:0,他引:3  
为提高Hilbert-Huang变换(HHT)中瞬时频率计算的真实性和稳定性,提出了一种信号的预处理方法.该方法首先对信号作傅里叶变换,然后根据插值点数作补零处理,再进行傅里叶反变换,完成傅里叶插值功能.对傅里叶插值处理后的信号作经验模态分解(EMD)得到一组固有模态函数(IMF),计算所有IMF的瞬时频率和幅值,最终获得信号时频分布的Hilbert谱.结果表明,该傅里叶插值的预处理方法能够有效消除和抑制HHT分析中的瞬时频率波动和虚假成分产生,增强了瞬时频率的准确性,提高了HHT方法的信号分析频率,该方法能有效应用于实际信号处理的HHT时频分析中.  相似文献   

13.
主瓣压制式干扰是现代电子战中雷达所面临的重要干扰样式。在多站雷达系统下,由于干扰机宽波束的特点,各接收站接收到干扰信号是高度相关的,而目标在各探测方向上的散射特性不同,在各接收站中的回波信号是相互独立的。根据这一空间散射特性的差异,该文提出一种基于幅度比特征的多站雷达主瓣干扰抑制方法。在各接收站进行时间对齐后,对各时刻点的回波信号计算幅度比,将时域信号转化到幅度比特征域,在该特征域中,干扰的相关性导致其在背景中被“平滑”,目标回波的独立性使目标“凸显”。最后,在幅度比特征域设定固定门限,对目标进行恒虚警检测。仿真实验验证了该方法能够有效地抑制主瓣压制式干扰,并可改善主瓣干扰条件下的目标检测性能。  相似文献   

14.
快速傅立叶变换是电力系统谐波分析常用方法,但FFT在非同步采样和非整数周期截断的情况下存在较大误差,无法获得较精确的谐波参数.在此基础上现有单峰谱线插值算法可以有效改善谐波数据准确度.但是算法的分析精度很大程度上取决于信号频率校正系数的计算精度且计算量大,利用专用电能计量芯片ATT7022B可准确测量出基波频率,在此基础上推导出的简化算式,极大降低了单峰谱线算法的计算量,并利用多项式逼近获得了幅值修正公式,显著提高了谐波检测的精度.  相似文献   

15.
针对电力谐波信号中含有密集频率的谐波/间谐波问题,提出全相位快速傅里叶变换(apFFT)与解析模态分解法(AMD)相结合的检测方法. 由于AMD在分解前需要确定信号中各个频率成分,应用apFFT对待分析信号进行频谱分析,得到频谱中各个频率的值;通过apFFT相位谱的平坦特性来判断信号中是否含有密集谱频率成分,获得密集频谱谐波/间谐波频率的大概位置,若含有密集频谱成分,对信号中的密集频段使用量子粒子群进行优化,寻找最佳的二分频率;通过各个频率成分之间的二分频率,利用AMD方法将电力谐波信号分解为一系列的单频信号分量,以完成含有密集频率的谐波测量. 与希尔伯特-黄变换法(HHT)相比,该方法对于含有密集频率的谐波/间谐波信号分解效果更好. 仿真和实验结果都表明了该方法的有效性和准确性.  相似文献   

16.
两种高精度FFT算法在介损测量中的应用   总被引:6,自引:1,他引:5  
直接采用基于FFT的谐波分析法进行介损测量时,采样的非同步性使测量精度大大降低。为了减小频率波动引起的非同步采样对傅立叶变换的影响,提高介损的测量精度,通过加窗插值和修正理想频率对原算法进行了改进。先对非同步采样的泄漏效应进行了简要的分析,然后就提出的两种改进算法在介损测量中的应用进行了详尽论述,理论推导表明二者都能很好地满足介损的精度要求。最后借助MATLAB软件进行了数值仿真,仿真结果进一步验证了改进算法的有效性和可行性。  相似文献   

17.
针对转发式线性调频(LFM)有源欺骗干扰的检测问题,提出了基于干扰信号谐波分量调频率匹配的检测方法.数字射频存储器存在谐波效应特性,该方法通过分析干扰信号的频谱特征规律,建立谐波分量调频率参数库.在雷达距离门内同时存在目标回波和干扰信号的情形下,利用分数阶傅里叶变换检测雷达回波中LFM信号分量并估计其调频率,通过与参数库进行匹配分析,实现干扰信号的检测.仿真结果验证了该方法的有效性.  相似文献   

18.
针对电能质量的分析,设计了基于DSP和GPLD的电能质量检测装置,完成对电网信号数据的实时采集和处理。文中介绍了系统的总体结构以及数据处理的方法。由于非同步采样造成频谱泄漏和栅栏效应的误差,采用同步采样的实现方法。为提高计算的准确性,采用基于加窗插值的FFT算法分析电力系统谐波,并对算法的实现进行了详细的描述。  相似文献   

19.
针对一类电力系统的测试信号具有半波对称特性,提出了一种改进FFT算法.该算法在传统FFT算法的基础上省去了偶次谐波分量的计算,只分析奇次谐波,计算量是传统FFT的一半,大大提高了谐波的分析速度.在此基础上,为解决因非同步采样所导致的频率泄露问题,通过引入基于该改进算法的自适应频率跟踪流程,从而实现对这类电网谐波快速、精确的分析.MATLAB仿真结果表明,该算法响应速度快、实时性好、测量精度高,可有效地抑制电网频率和相位的突变影响,是一种工程实用方法.  相似文献   

20.
In a non-side looking airborne radar system, the clutter of different range cells is not independently and identically distributed, which is caused by the severe clutter range-dependence. The clutter range-dependence can be compensated by the angle Doppler compensation (ADC) method simply and quickly. Although the ADC is widely applied, the compensation performance of the ADC is affected by the system error significantly because of the mismatch between Doppler frequency and spatial frequency. In this paper, a novel method to compensate the clutter range-dependence, namely ADC using sparse recovery (SR-ADC), is proposed. Firstly, the clutter spectral distribution estimation of the test cell and training cells are obtained by using sparse recovery. Then, the spatial frequencies and Doppler frequencies of the clutter spectrum center are determined. Finally, transform matrixes of different training cells are designed so that the clutter of training cells could be nearly stationary with respect to that of the test cell. Compared with the traditional angle Doppler compensation method, the proposed method improves greatly the compensation performance, especially that of main-lobe clutter. In addition, this method can also achieve good performance when the system error exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号