首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A spacecraft in orbit undergoes extreme temperature cycling, space radiations, and other extreme conditions that can potentially raise the temperature of spacecraft to harmful levels. Hardware and sensitive detectors utilized in spacecrafts require that temperatures be maintained within specified ranges. Thermal control coatings (TCCs) help to maintain the thermal equilibrium of the spacecraft at a level acceptable for vital components. This is done by employing the diffused reflection of all effective ultraviolet (UV), visible (VIS), and near-IR (NIR) wavelengths of solar radiation and emitting the infrared (IR) energy. The most commonly used TCCs have utilized potassium silicate as the binder and ZnO as the pigment (Z-93), but absorption of UV light by ZnO pigment affects the ideal scheme of these TCCs. In the present study, silica-supported zinc oxide particles with different ZnO contents were synthesized as pigments for white thermal control coatings and the optimized one was selected based on the experimental determination of the optical properties of the prepared coatings. The results revealed that the optimized TCCs containing pigment with the zinc to silicon ratio of 1.91 had better reflection and emission properties in comparison with Z-93, due to the improvement in the refractive index and the dispersion quality of pigment. Then, the scattering properties (S) of the synthesized pigments and ZnO in TCC were investigated based on the reflectance data, according to the Kubelka–Munk analysis. The general trend in scattering coefficients for each formulation showed the same shape, such that with the increase in S values, the zinc to silicon ratio of pigments was raised too. Also, this trend revealed that scattering was more efficient at longer rather than shorter wavelengths. For Z-93, this trend was completely opposite. Also, S values for Z-93 in the wavelength range of 200–400 nm were around zero, while for the prepared coatings, this was not the case. Finally, the statistical nonlinear regression method was utilized to prepare a model for reflectance as a function of the zinc to silicon ratio of pigments and the wavelength of light.  相似文献   

2.
Thermal control coatings (TCCs) help to maintain the thermal equilibrium of spacecraft at a level acceptable for vital components, usually around 20°C. This is done by either minimizing the solar absorbance or maximizing the thermal emittance. In the present study, with the aim of introducing new TCCs with enhanced optical properties, two TCCs were prepared by incorporating presynthesized pigments including SBA-15 (mesoporous material) and Zn-SBA-15 into potassium silicate binder. After application and drying, the TCC containing SBA-15 showed very low hiding power, so optical tests for this TCC were not done. The results of solar absorptance measurements revealed that the TCC containing Zn-SBA-15 was a proper reflector in the ultraviolet (UV) radiation range, making it much less susceptible to solar radiation in comparison with conventional TCCs. Also, thermal emittance tests demonstrated that the surface of this TCC had greater ability to emit heat. Furthermore, lower pigment-to-binder ratio and dry film thickness were attainable with this TCC, leading to weight reduction, improvement of mechanical properties, and lower porosity.  相似文献   

3.
This paper investigates the reduction of ionic concentration and carbon oxygen demand (COD) in dairy process waters modelled by one volume of skim milk diluted with two volumes of water using shear-enhanced reverse osmosis. Initial COD and conductivity were, respectively, 36,000 mg O2 L−1 and 2000 μS cm−1. We have compared the performances of a VSEP vibratory pilot and of a single rotating disk-stationary membrane module equipped with the same Desal AG membrane (Osmonics). Membrane shear rates were varied by changing the vibration frequency in the VSEP and the disk rotation speed or adding radial vanes in the other module. In all tests the permeate COD was reduced below 15 mg O2 L−1. Permeate fluxes reached a maximum of 180 L h−1 m−2 at a transmembrane pressure (TMP) of 4 MPa at initial concentration with the VSEP at its resonant frequency and with the disk equipped with 6 mm high vanes rotating at 2000 rpm. Permeate conductivity fell from 60 μS cm−1 at 1 MPa to about 18 μS cm−1 at 4 MPa. In concentration tests, corresponding permeate fluxes at the maximum volume reduction ratio reached (VRR = 8), were 55 L h−1 m−2 for the VSEP and 60 L h−1 m−2 for the rotating disk at a TMP of 4 MPa. Permeate conductivities increased exponentially with VRR from 18 to 210 μS cm−1 for the rotating disk and to 250 μS cm−1 for the VSEP. However the mean conductivity of collected permeate varied from 38 μS cm−1at highest shear rate to 60 at lower shear rates. This study shows that these filtration systems permit to obtain reusable water from this high initial COD model effluent with one single reverse osmosis step.  相似文献   

4.
We have fabricated an array of cone-shaped diamond tips for use as a field electron emitter by air-plasma etching a polycrystalline diamond film with a silicon oxide mask. The difference in etching speed between the mask and the diamond resulted in the formation of cone-shaped diamond tips. Post-treatment with hydrogen plasma was effective in cleaning the diamond tips and increasing the surface conductivity. The emission from the diamond tips was measured with a diode configuration. The threshold field was 3 V μm−1, and the emission current was 0.8 nA tip−1 when the field was raised to 10 V μm−1.  相似文献   

5.
The dissolution of soluble pigments from both tin-based and tin-free chemically active antifouling (AF) paints is a key process influencing their polishing and biocide leaching rates. In this context, a low time- and resources-consuming method capable of screening the pigment behaviour in the search for the most promising materials or mixtures is of great interest. A preliminary attempt to develop such a method is presented in this paper based on the widely used ZnO pigments.

While highly pure, nano-polished, monocrystalline ZnO substrates yielded very low dissolution rates in the order of 17.3 ± 3.7 μg Zn2+ cm−2 day−1, pellets prepared by compacting and sintering technical grade ZnO pigments dissolved about three times faster according to inductively-coupled plasma mass spectrometry (ICP-MS) measurements. The rougher and more porous surface exposed, together with the larger number of defects in the lattice structure, are hypothesised to be responsible for the faster sea water attack of the pellets compared to the ZnO crystals. In any case, the ZnO dissolution rates reported in this paper are markedly lower than those associated with the sea water dissolution of cuprous oxide (Cu2O) particles which are also used in AF paints. Experimental performance testing of model antifouling paints formulated with ZnO and/or Cu2O demonstrates that the binder/pigment interaction should not be disregarded if the leaching of sea water soluble pigments from paint systems is to be determined.  相似文献   


6.
The interaction of HCl with an η-alumina catalyst has been investigated by a combination of diffuse reflectance infrared spectroscopy, temperature-programmed desorption and inelastic neutron scattering (INS) spectroscopy. Infrared spectra provide evidence for dissociative adsorption of HCl and for a process in which hydroxyl groups terminally bound to Al are replaced by chlorine. Temperature-programmed desorption experiments show HCl to desorb over the temperature range 350–>970 K, indicating dissociative HCl adsorption to occur on a wide range of active sites. INS experiments show the residual alumina hydroxyl groups to exhibit an out-of-plane deformation feature, γ(OH), at ca. 200 cm−1, while the in-plane deformation mode, δ(OH), is seen at ca. 1000 cm−1. The formation of new surface hydroxyl groups via the adsorption of hydrogen chloride yields a δ(OH) feature that can be resolved into two bands at 990 and 1050 cm−1. Hydrogen bonding within the alumina/HCl system is responsible for the observation of an Evans transmission window in the infrared spectrum, that occurs via a Fermi resonance interaction between (i) the ν(OH) mode of hydrogen bonded hydroxyl groups and chemisorbed water with (ii) the overtone of the δ(OH) mode of surface hydroxyl groups. The INS technique is able to discriminate among different hydroxyl group bonding geometries on the basis of the local symmetry of the active sites.  相似文献   

7.
The kinetics of batch dry grinding of binary mixtures of ceramic raw materials, namely quartz–kaolin, quartz–potassium feldspar and kaolin–potassium feldspar, from the feed sizes of −3.350 + 2.360, −2.000 + 1.400, −0.850 + 0.600, −0.500 + 0.355 and −0.300 + 0.212 mm have been determined using a Bond mill with a mixture of ball sizes of 38.10, 31.75, 25.40, 19.05 and 12.70 mm diameter and total mass of 22.648 kg. The Bond mill used was a size of 30.5 cm diameter, 30.5 cm length, with a total volume of 22,272 cm3. The fractional ball filling was 22% of mill volume and the mill speed was 70 rpm. The breakage parameters were obtained for those mineral mixtures to predict the product size distributions. As the feed sized given above, which were ground in the mill, increase, the specific rate of breakage (Si) values also increase, which means faster breakage with higher Si value occurs in the order of quartz–kaolin, quartz–potassium feldspar and kaolin–potassium feldspar mixtures when comparing the characteristic values (slope of Si versus size relationship with higher value). The cumulative breakage distribution function (Bi,j) values obtained for these mineral mixtures were slightly different in terms of the fineness factor, γ. This means that quartz–potassium feldspar mixture produced less fines with higher γ value, while kaolin–potassium feldspar gave more fines with lower γ value. The simulations of the product size distribution for these mixing were very close to the experimental data. Finally, slowing down effect, treated with false time concept, started earlier than the expected for these binary mixtures. There were some correlations found between the simulated time (θ) and experimental time (t).  相似文献   

8.
Electrochemical impedance spectroscopy (EIS) was applied as a principal tool to describe the efficiency of anticorrosive epoxy paints (primers) based on zinc molybdenum phosphate (ZMP) pigment. Steel-coated samples were exposed to a 0.5 M NaCl solution. During the study the corrosion potential (Eoc) and Rp values also were monitored every 24 h. It is discussed the incorporation of micronized ZnO (1 μm) pigment to the base mixture and its positive, reinforcement effect on the protective properties of ZMP primer. The explanation is related to the izoelectric point (IEP) of ZnO particles (pH < 9), which determines their positive surface charge and electrostatic attraction with the molybdate anion. In this case the charge of the formed double layer capacitor is very high. Moreover, the mentioned attraction inhibits and saves ZnO particles from their rapid dissolution to hydroxide.  相似文献   

9.
10.
Separation properties of a mordenite membrane for water–methanol–hydrogen mixtures were studied in the temperature range from 423 to 523 K under pressurized conditions. The mordenite membrane was prepared on the outer surface of a porous alumina tubular support by a secondary-growth method. It was found that water was selectively permeated through the membrane. The separation factor of water/hydrogen and water/methanol were 49–156 and 73–101, respectively. Even when only hydrogen was fed at 0.5 MPa, its permeance was as low as 10−9 mol m−2 s−1 Pa−1 up to 493 K, possibly suggesting that water pre-adsorbed in the micropores of mordenite hindered the permeation of hydrogen. The hydrogen permeance dramatically increased to 6.5 × 10−7 mol m−2 s−1 Pa−1 at 503 K and reached to 1.4 × 10−6 mol m−2 s−1 Pa−1 at 523 K because of the formation of cracks in the membrane. However, the membrane was thermally stabilized in the presence of steam and/or methanol.  相似文献   

11.
The single gas H2 and N2 permeability of a 4 μm thick dense fcc-Pd66Cu34 layer has been studied between room temperature and 510 °C and at pressure differences up to 400 kPa. Above 50 °C the H2 flux exhibits an Arrhenius-type temperature dependence with JH2=(5.2±0.3) mol m−2 s−1 exp[(−21.3 ± 0.2) kJ mol−1/(R·T)]. The hydrogen transport rate is controlled by the bulk diffusion although the pressure dependence of the H2 flux deviates slightly from Sieverts’ law. A sudden increase of the H2 flux below 50 °C is attributed to embrittlement.  相似文献   

12.
Particle motion at the wall of a circulating fluidized bed   总被引:3,自引:0,他引:3  
The motion of alumina particles of mean size 74.9 μm in the region near to the wall of the 305 mm diameter riser of a cold model circulating fluidized bed has been studied using a high-speed video camera employing normal and magnifying lenses. Particles in this region were found to move predominantly downwards, against the main gas flow. High density groups or swarms of particles typically arch-shaped were observed to descend in contact with the wall at velocities in the range 0.3–0.4 m s−1. Tfie distribution of swarm descent velocities was shown to be little affected by changes in superficial gas velocity over the range 3–5 m s−1 and imposed mean solids mass flux over the range 2 to 80 kg m−2 s−1. A region of steady bulk downflow of solids with a velocity of approximately 1.0 m s−1 was observed to appear a few millimetres from the wall at mean suspension densities greater than 5.6 kg m−3. Motion of particles in contact with the riser was analysed by identification of three flow forms; dilute, dense and swarm flow. Results of the analysis are linked with the observations of other workers concerning the onset of the so-called ‘similar profiles’ regime. The relationship between the measured effective particle swarm length and the cross-sectional mean suspension density was established and the implications for modelling suspension-to-wall heat transfer discussed.  相似文献   

13.
Coal-tar pitches, from coals of different rank and with various quinoline-insoluble contents, were carbonized under pressure (67 to 200 MN m−2) to maximum temperatures of 923 K. The resultant cokes were examined by optical and scanning electron microscopy in terms of size and shape of anisotropic structures within the coke. Natural quinoline-insolubles and carbon blacks both destroyed growth of the mesophase and development of anisotropy. Graphite particles (<10 μm) promoted growth and coalescence of the mesophase. Fourteen coals, of carbon content 77 to 91 wt%, VM 41 to 26%, were similarly carbonized under pressure. In the lower-rank coals no microscopically resolvable anisotropic mesophase was produced, but at a carbon content of 85% anisotropic units 1–2 μm in diameter were detected, increasing in size at a carbon content of 90% to 5 μm diameter. Results are discussed in terms of the origins of anisotropic mosaics observed in cokes, their variation in size with coal rank, and their significance in the carbonization of coal.  相似文献   

14.
Edward A. Cloutis   《Fuel》2003,82(18):2239-2254
The 0.3–26 μm (33,000–385 cm−1) reflectance spectra of the <45 μm fractions of a series of coal samples ranging from lignite to anthracite were analyzed in conjunction with compositional information to derive spectral–compositional–structural relationships. The reflectance spectra, particularly in the 1.8–4 μm (5500–2500 cm−1) region exhibit a number of absorption features attributable to both the organic and inorganic components. Quantitative spectral–compositional relationships were found which permit the derivation of properties such as aromaticity, total aliphatic, aromatic content, moisture content, volatile content, fixed carbon abundance, fuel ratio, carbon content, nitrogen abundance, H/C ratio, and vitrinite reflectance. In general, all absorption bands become less intense, and overall reflectance decreases with increasing rank.  相似文献   

15.
《Ceramics International》2022,48(1):754-759
Thermal control coatings (TCCs) are an essential part of the thermal control systems in the spacecraft. Solar absorptance and emittance are the key performance parameters of TCCs. To develop an ultra-low solar absorption and stable inorganic TCCs for surface radiator, different TCCs were prepared by co-sintering ZnO and SiO2 nanoparticles to form Zn2SiO4/SiO2 pigment in this work, and the optical properties and radiation stability were systematically studied. It is found that the coating based on composite pigment has high reflectivity in the ultraviolet band and excellent optical performance possessing the low solar absorption of 0.06. In addition, the Zn2SiO4/SiO2 coating demonstrates the highest proton and electron radiation stability because that SiO2 between Zn2SiO4 particles acts as the relaxation center of the defects caused by radiation.  相似文献   

16.
Effect of electrical ageing (EA) on the field emission parameters of thin multiwall carbon nanotube composite (t-MWCNTs-composite) was studied. Initially, t-MWCNTs were mixed with -terpineol and ethyl cellulose and subjected to three roll milling process to obtain t-MWCNTs-composite. Following this, the composite was screen printed on a conducting substrate, annealed for 10 min and employed to the electrical ageing process for a period of 6 h. The ageing, on each cathode layer, was repeated for five times and JE characteristics have been collected before and after each ageing attempt. The analysis revealed that, the magnitude of threshold turn-on-field gradually increased from its virgin value of 1.223 to 1.968 V µm− 1 and corresponding mean field enhancement factor, γm, gradually decreased from 2700 ± 210 to 1940 ± 30 with a sequential increase in the ageing attempts. The degradation rate, δJt, estimated for untreated and EA samples, indicated that the magnitude of δJt reached to an equilibrium value of ~ 0.785 μA cm− 2 min− 1, which shows a stable emission state of the emitters. To investigate the effect of EA on the physical state of the emitters, a few virgin and all EA samples were subjected to scanning electron microscopy, micro Raman spectroscopy and X-ray photoelectron spectroscopy. The details of the analysis are presented.  相似文献   

17.
A method has been devised in which alumina can be formed into a layer of thin leaf-like structures that have a thickness of 0.2–0.8 μm. This consists of a process in which aluminium iso-propoxide is transformed into a sol–gel and then: frozen (−195 °C), freeze-dried (−60 °C), and finally calcined (450 °C). These special conditions lead to the formation of a structure that is named: ‘KK Leaves’.

After calcining at 450 °C, the leaves have a specific surface area of 282 m2/g, an average pore size of 2.8 nm, and exhibit a curly shape. The structure has the appearance of a loosely packed (but ordered) collection of thin curly leaves with fine ribs resembling leaf veins on trees and plants. They would readily act as a support, e.g., for a catalyst, or adsorbents, or act as a membrane filter.  相似文献   


18.
Effects of oxygen concentration on the electrical properties of ZnO films   总被引:1,自引:0,他引:1  
In this paper, electrical characteristics by various oxygen content in ZnO films were studied. To control the oxygen content of ZnO films, post-thermal annealing was performed in N2 and air ambient, led to improve crystallinity and optical properties of ZnO films. The oxygen concentration was measured by Auger electron spectroscopy. The ZnO films having the deficiency of oxygen showed the electron concentrations between 1021 and mid 6 × 1017 cm−3 and resistivity at 10−3–10−1 Ω cm. On the other hand, when the oxygen concentration of the ZnO films was up to the stoichiometry with Zn, the ZnO films showed low electron concentration at −1017 cm−3 and resistivity at 10 Ω cm.  相似文献   

19.
The effects of boron (B) doping on the field emission (FE) of diamond films grown by a microwave plasma chemical vapor deposition technique were studied. Raman scattering spectroscopic analysis revealed that B-doping significantly suppressed formation of non-diamond components in the diamond film. The B-doped p-type diamond films had low resistivity, ranging from 0.07 to 20 Ω cm, and various volume fractions of non-diamond components in the diamond films. The turn-on electric field, FT, was independent of the resistivity, the film thickness, and the volume fraction of the non-diamond components. The lowest FT value of 8 V μm−1 and the highest emission current of 3×10−2 A cm−2 were obtained in the B-doped diamond films. The high efficiency of the electron emission in the B-doped diamond films was believed to be due to the increase in volume fraction of the conductive regions in the film and the high density of emission sites on the film surface.  相似文献   

20.
The filtration of wastewaters generated in the cork industrial process is investigated by using three membranes in tangential filtration laboratory equipment. The three membranes used were two microfiltration membranes with pores sizes of 0.65 and 0.1 μm (DUR-0.65 and DUR-0.1 membranes), and a ultrafiltration membrane with a molecular weight cut-off of 300 kDa (BIO-300K membrane). The water hydraulic permeability was determined for each membrane (values of 860, 248 and 769 L h−1 m−2 bar−1 were found), and the influence on the permeate flux of the main operating variables, such as transmembrane pressure, feed flow rate, temperature and nature of the membranes, was established. The effectiveness of the different membranes and operating conditions was evaluated by determining the removal obtained for several parameters which measure the global pollutant content of the effluent: COD, absorbance at 254 nm, tannic content, color and ellagic acid, which is selected as a major model pollutant among the different organic compounds present in this wastewater. The values of the corresponding retention coefficients depended on the operating conditions, but in all cases were in the sequence: ellagic acid and color > absorbance at 254 nm > tannic content > COD. Globally, the higher removals were obtained for the BIO-300K membrane at 20 °C, with QF = 5.3 L h−1 and TMP = 1.8 bar. Finally, the fouling of the membranes was assessed, and the corresponding mechanism for each membrane was established by fitting the experimental data to various filtration fouling models reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号