首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 753 毫秒
1.
Ag/ZnO hybrid cages with well-preserved polyhedron shape and rich mesoporous structures were prepared thorough in situ pyrolysis of AgNO3 impregnated ZIF-8 precursor. Due to the bi-template function of ZIF-8, the as-prepared cages show well-defined hollow chamber inherited from the precursor and uniformly embedded Ag nanoparticles (NPs). The as-introduced Ag NPs could enhance the light absorption and promote charge separation, which finally improve the antibacterial performances. Therefore, compared with pure ZnO, the Ag/ZnO hybrid cages demonstrate prominent photocatalytic degradation of different organic dyes, such as Methylene Blue, Methylene Orange, Eosin and Rhodamine B under simulated sunlight. In addition, the hybrid Ag/ZnO cages exhibit outstanding inhibition performances against Escherichia coli, Staphylococcus aureus, and the highly infective Mycobacterium-tuberculosis. The photocatalytic and antibacterial mechanism of the hybrid Ag/ZnO cages were also studied in detail by means of optical/electrochemical dynamic tests and Ag+ and Zn2+ release measurements.  相似文献   

2.
ZnO–TiO2, SiO2–TiO2, and SiO2–TiO2–ZnO hybrid nanocomposite coatings were synthesized based on sol–gel precursors including tetramethoxysilane (TMOS), 3-glycidoxypropyl trimethoxysilane (GPTMS), tetra(n-butyl orthotitanate) (TBT), and zinc acetate dihydrate. The hybrid network was characterized by FTIR, FESEM, and EDAX techniques. Results indicated that inorganic particles’ size was of nanoorder (20–30 nm), with very uniform distribution and dispersion. Photocatalytic and self-cleaning activities of these coatings were further investigated by degradation of methylene blue in an aqueous solution (20 ppm) at visible light irradiation, indicating photocatalytic performance of the coatings containing ZnO and TiO2 nanoparticles. The antibacterial effect of the coatings was investigated for inhibition and inactivation of cell growth, with the results showing the same antibacterial activity for ZnO–TiO2 and SiO2–TiO2–ZnO coatings against Escherichia coli and Staphylococcus aureus; the activity was, however, higher than that of SiO2–TiO2 hybrid nanocomposite coatings.  相似文献   

3.
《Ceramics International》2019,45(16):19948-19955
ZnO was doped with Sc(III) ions to obtain a low-cost and environment-friendly antibacterial material with highly synergistic antimicrobial activity. The combination of experimental results and theoretical insights was used to describe the effect of Sc doping on the electronic and structural properties of ZnO. Sc(III)-doped ZnO materials with different Sc(III) contents were deposited on white carbon black (WCB) by a facile sol-gel method. The Sc(III) doped antibacterial materials were characterized by FESEM, EDX, HR-TEM, BET, XPS, XRD, ICP-OES, UV–visible spectroscopy, Fastsage and Materials Studio (MS). The antibacterial activities of Zn WCB and Zn–Sc WCB were determined by counting Escherichia coli (E. coli) and Staphylococcus aureus (S.aureus) colonies on bacterial culture plates. The results show that the specific surface area of Sc-doped Zn on WCB was increased by 31.9 m2/g compared to Zn WCB. The optimum doping ratio of Zn and Sc was determined in Zn0.9574Sc0.0426O cut from hexagonal wurtzite structure ZnO. Moreover, pure ZnO and Zn0.9574Sc0.0426O models were established by density functional theory (DFT). The experimental results and DFT calculations demonstrated that ZnO WCB possessed excellent antibacterial properties after doping with Sc. This improved antibacterial activity was due to the effects of Sc2O3 on the ZnO lattice, which resulted in the generation of excess reactive oxygen species (ROS).  相似文献   

4.
《Ceramics International》2023,49(8):12274-12284
Photocatalytic antibacterial coats are considered among the best solutions to bacterial contamination of fabrics, with the drawback of reduced efficacy after continued use and washing. In the present study, the g-C3N4/ZnO (CNZ) nanocomposite has been introduced as a novel cotton fabric coating, with high durability, and CNZ nanopowders were synthesized using a two-step thermal synthesis process and directly coated onto cotton fabric using the sonication technique. The synthesized nanoparticles (NPs) were examined using X-ray diffraction (XRD), UV–visible spectroscopy, photoluminescence (PL), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) analyzes. Besides, the SEM analysis confirmed the successful deposition of NPs on cotton fabric. The photodegradation of methylene blue (MB) stain was assessed as a functional test for the photocatalytic effectiveness of the coated fabric, then its antibacterial properties were evaluated under visible light, by direct contact with bacterial suspensions and culturing. The results revealed that the CNZ-coated cotton fabric containing 30% ZnO (CNZ-30) has significant photocatalytic antibacterial activity against both Escherichia coli (gram-negative), and Staphylococcus aureus (gram-positive) bacteria. The bacterial reduction rate of CNZ-30 coated fabric for both E. coli and S. aureus was above 98%, even after 18 washing cycles. This excellent performance is attributed to the effective coupling of ZnO with g-C3N4, improved light absorption, and reduced e/h+ pair recombination rates. This study novel coating method can offer an environmentally friendly, cost-effective, and simple process to manufacture hybrid CNZ antibacterial cotton in the textile industry.  相似文献   

5.
Dual‐function silica–silver core‐shell (SiO2@Ag) nanoparticles (NPs) with the core diameter of 17 ± 2 nm and the shell thickness of about 1.5 nm were produced using a green chemistry. The SiO2@Ag NPs were tested in vitro against gram‐positive Staphylococcus aureus (S. aureus) and gram‐negative Escherichia coli (E. coli), both of which are human pathogens. Minimal inhibitory concentrations of the SiO2@Ag NPs based on Ag content are 4 and 10 μg mL?1 against S. aureus and E. coli, respectively. These values are similar to those of Ag NPs. SiO2@Ag NPs were for the first time incorporated to a commodity polypropylene (PP) polymer. This yielded an advanced multifunctional polymer using current compounding technologies i.e., melt blending by twin‐screw extruder and solvent (toluene) blending. The composite containing 5 wt % SiO2@Ag NPs (0.05 wt % Ag) exhibited efficient bactericidal activity with over 99.99% reduction in bacterial cell viability and significantly improved the flexural modulus of the PP. Anodic stripping voltammetry, used to investigate the antibacterial mechanism of the composite, indicated that a bactericidal Ag+ agent was released from the composite in an aqueous environment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
《Ceramics International》2022,48(8):10579-10591
In present study, we report a V doping fabrication method for obtaining rod-like MgO crystals decorated with a nanoflake layer. This novel structure has only been minimally reported in literature. Pure MgO and Mg2V2O7–MgO composite materials were obtained by precipitation and impregnation methods, with vanadium added concentrations of 0–9%. The influence of V doping on crystal structure and particle morphology of MgO was investigated by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis demonstrated that MgO has a cubic structure, while X-ray photoelectron spectroscopy (XPS) revealed that V5+ exists on the surface of MgO. The specific surface areas and pore sizes of MgO composites were calculated by BET and BJH analysis. These techniques revealed that specific surface area and pore size of MgO increased due to vanadium doping. The antibacterial effects of Mg2V2O7–MgO composite materials against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were assessed using a bacterial killing/colony-forming unit (CFU) assay and bacteriostatic ring method. Our results demonstrate that V doping dramatically improved antimicrobial properties of MgO, with 7 mol% doping inducing the best antibacterial activity. The antibacterial mechanisms of Mg2V2O7–MgO composite material were also proposed.  相似文献   

7.
A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.  相似文献   

8.
《Ceramics International》2023,49(12):20218-20233
We report facile biosynthesis of Ag–ZnO nanohybrids consisting of Ag nanoparticles decorated ZnO nanobullets prepared by decorating wet chemically synthesized ZnO nanobullets with Ag nanoparticles through bioreduction of Ag + ions with aqueous extract of Piper nigrum fruits. The prepared nanomaterials were well characterized by FESEM, TEM, HRTEM, EDX, XRD, XPS, PL and UV–vis spectroscopy. FESEM and TEM analyses on the nanohybrids revealed ∼18 nm Ag nanoparticles decorating ZnO nanobullets with average size ∼48 nm. XRD results revealed hexagonal wurtzite ZnO with 22.4 nm crystallite size and FCC Ag with 18.7 nm crystalline size. Ag–ZnO nanohybrids exhibited strong antibacterial action against Escherichia coli, Bacillus oceanisediminis and Pseudomonas entomophila and efficiently inhibited their growth at 100 μg/mL, 50 μg/mL and 125 μg/mL, respectively. The molecular basis of antibacterial action of Ag–ZnO nanohybrids against E. coli was investigated using different biochemical and molecular assays. Addition of antioxidant histidine suppressed the antibacterial action of Ag–ZnO nanohybrids towards E. coli due to its ROS scavenging action. Bradford assay results showed enhanced protein leakage from Ag–ZnO nanohybrids treated E. coli, while TBARS assay results confirmed lipid peroxidation triggered by ROS. SEM on Ag–ZnO nanohybrids treated E. coli confirmed significant damage to the cell wall leading to morphology change. The antibacterial activity of Ag–ZnO nanohybrids against E. coli is mainly due to the ROS-induced oxidative stress, which caused enhanced lipid peroxidation, cell wall damage leading to significant protein leakage and DNA fragmentation.  相似文献   

9.
Zinc oxide (ZnO) nanostructures have received widespread attention due to their unique structure and broad application possibilities, but high preparation costs and agglomeration limit their usage. In this article, low-cost and environmentally friendly cellulose and ZnCl2 are used to synthesize ZnO nanoparticles (ZnO NPs). Subsequently, multifunctional ZnO/polyacrylonitrile hybrid nanofiber mats (ZnO/PAN@NFMs) with mechanical stability suitable for large-scale application are prepared via solution blow-spinning. The synthesized ZnO/PAN@NFMs exhibit higher photodegradation of organic dyes than earlier reported semiconductors and good recycling performance with an organic dye degradation above 94%–98% after five cycles, which is ascribed to fixation of the ZnO NPs in the nanofibers. In addition, the inhibition rate for Escherichia coli and Staphylococcus aureus is above 99.9% and the bacteriostatic rate against E. coli remains as high as 99% after 10 cycles. From these properties, the synthesized composite ZnO/PAN@NFMs are promising for wastewater cleaning and antibacterial fabrics.  相似文献   

10.
A series of seven alkali-free silica-based bioactive glasses (SBG) with ZnO and/or SrO additives (in concentrations of 0–12?mol%) were synthesized by melt-quenching, aiming to delineate a candidate formulation possessing (i) a coefficient of thermal expansion (CTE) similar to the one of titanium (Ti) and its medical grade super-alloys (crucial for the future development of mechanically adherent implant-type SBG coatings) and (ii) antibacterial efficiency, while (iii) conserving a good cytocompatibility. The SBGs powders were multi-parametrically evaluated by X-ray diffraction, Fourier transform infrared and micro-Raman spectroscopy, dilatometry, inductively coupled plasma mass spectrometry, antibacterial (against Staphylococcus aureus and Escherichia coli strains) suspension inhibition and agar diffusion tests, and human mesenchymal stem cells cytocompatibility assays. The results showed that the coupled incorporation of zinc and strontium ions into the parent glass composition has a combinatorial and additive benefit. In particular, the “Z6S4” formulation (mol%: SiO2—38.49, CaO—32.07, P2O5—5.61, MgO—13.24, CaF2—0.59, ZnO—6.0, SrO—4.0) conferred strong antimicrobial activity against both types of strains, minimal cytotoxicity combined with good stem cells viability and proliferation, and a CTE (~?8.7?×?10?6 ×?°C?1) matching well those of the Ti-based implant materials.  相似文献   

11.
《Ceramics International》2019,45(14):17476-17488
Cu@ZnO is an important class of material with applications as catalysts, photocatalysts, optoelectronic devices and antimicrobial agents. Because of its potential for large-scale applications and its high redox activity, detailed examination of the properties and risk assessment of this class of materials should be performed. In this work, Cu@ZnO composites were synthesized using a two-step procedure. ZnO crystalline nanostructured materials were prepared within minutes by a solvothermal microwave-assisted method. Deposition of copper nanoparticles on the surface of ZnO was conducted by reduction of Cu2+ in ethylene glycol (EG). Copper nanoparticles with different morphologies (needle-like and spheres) were deposited on the surface of ZnO. The antibacterial activity of Cu@ZnO composites was evaluated using E. coli and S. aureus as model organisms. The Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were evaluated for Cu@ZnO composites under visible light radiation (VLR) and in the dark (D). The composites exhibit antibacterial activity under VLR at low concentrations: 250 μg/mL and 750 μg/mL for E. coli, and 250 μg/mL and 500 μg/mL for S. aureus. Copper nanoparticles exert antibacterial activity and can be used to inhibit the growth of microorganisms in the absence of irradiation of Cu@ZnO material. Better antibacterial activity of Cu@ZnO material was achieved under radiation, demonstrating the synergic activity of Cu and ZnO materials for disinfection. Toxicity of the material was assessed towards Daphnia magna (D. magna) and Lecane papuana (L. papuana). Composites exert toxicity at lower concentrations than ZnO, observing LC50 values for L. papuana of 79.30 ± 6.70 μg/mL, and 5.59 ± 0.46 μg/mL for ZnO and Cu@ZnO, respectively. For D. magna, a LC50 of 9.66 ± 1.22 μg/mL (Cu@ZnO) was observed. Although Cu@ZnO can be considered as potential candidate for the development of efficient antibacterial agents, its antibacterial activity is achieved at doses that can be harmful to aquatic invertebrates. Thus, its application should avoid its entry to aquatic environments.  相似文献   

12.
Phase equilibria of the ZnO–SiO2, Al2O3–SiO2 and ZnO–Al2O3–SiO2 systems at liquidus were characterized at 1340–1740 °C in air. The ZnO–Al2O3 subsolidus phase equilibria were derived from the experiments with the SiO2- and CaO + SiO2-containing slags. High-temperature equilibration on silica or platinum substrates, followed by quenching and direct measurement of Zn, Al, Si and Ca concentrations in the phases with the electron probe X-ray microanalysis (EPMA) was used to accurately characterize the system. Special attention was given to zincite phase that was shown to consist of two separate ranges of compositions: round-shaped low-Al zincite (<2 mol.% AlO1.5) and platy high-Al zincite (4–11 mol.% AlO1.5). A technique was developed for more accurate measurement of the ZnO solubility in the low-ZnO phases (corundum, mullite, tridymite and cristobalite) surrounded by the ZnO-containing slag, using l-line for Zn instead of K-line, avoiding the interference of secondary X-ray fluorescence. Solubility of ZnO was found to be below 0.03 mol.% in corundum and cristobalite, and below 0.3 mol.% in mullite. Present experimental data were used to obtain a self-consistent set of parameters of the thermodynamic models for all phases in this system using FactSage computer package. The modified quasichemical model with two sublattices (Zn2+, Al3+, Si4+) (O2?) was used for the liquid slag phase; the compound energy formalism was used for the spinel (Zn2+,Al3+)[Zn2+,Al3+,Va]2O2-4 and mullite Al3+2(Al3+,Si4+) (O2?,Va)5 phases; the Bragg-Williams formalism was used for the zincite (ZnO, Al2O3); other solid phases (tridymite and cristobalite SiO2, corundum Al2O3, and willemite Zn2SiO4) were described as stoichiometric. Present study is a part of the research program on the characterization of the multicomponent Pb–Zn–Cu–Fe–Ca–Si–O–S–Al–Mg–Cr–As–Sn–Sb–Bi–Ag–Au–Ni system.  相似文献   

13.
《Ceramics International》2023,49(18):29923-29932
Mesoporous bioactive glass nanoparticles (MBGNs) have gained considerable attention as multifunctional platforms for simultaneously releasing ions and phytotherapeutic compounds. Thus, in the first part of this study, MBGNs based on the 53SiO2–4P2O5–20CaO–23Na2O (wt %) (S53P4) composition were synthesized by a microemulsion assisted sol-gel method. More precisely, P2O5 was substituted with B2O3 and Na2O with MgO and/or ZnO. For B containing MBGNs all ions were successfully incorporated into the borosilicate structure without inducing crystallisation. In contrast, for S53P4 a poorly crystalline hydroxyapatite phase was identified. All MBGNs had a typical spherical shape with an internal radial network of mesopores. Additionally, for S53P4 a second fraction of particles with a smaller size and compact core was observed. Secondly, the feasibility of MBGNs as nanocarriers for gallic acid (GA) was evaluated. All drug-loaded samples showed a similar in vitro release profile which can be divided into three main phases: burst release, slow release and sustained release. Among the different compositions, S53P4 exhibited the highest cumulative release, whereas B and Mg containing particles exhibited the opposite. The presence of Zn in the MBGN compositions improved their antibacterial effect against both E. coli and S. aureus. Moreover, it was shown that depending on the MBGNs’ composition, the antibacterial activity of GA loaded MBGNs can be enhanced. Thus, the results proved that MBGNs can be used as controlled drug delivery system and, by tailoring the composition, a synergistic antibacterial effect can be achieved, considering that GA and biologically active ions are simultaneously released.  相似文献   

14.
《Ceramics International》2021,47(22):31617-31624
The present work aimed to synthesize Zn0.95Ag0.05O (ZnAgO) nanoparticles using rosemary leaf extracts as a green chemistry method. The characterization of Ag-doped ZnO nanoparticles was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectrophotometry (UV–visible). The XRD, FTIR, and UV–visible spectra confirmed the formation of the presence of hexagonal ZnAgO nanoparticles. FESEM micrograph shows that the nanoparticles have been distributed homogeneously and uniformly. The morphology of ZnAgO nanoparticles is quasi-spherical configuration. Also, the mean particle size is in the range of 22–40 nm. The photocatalytic degradation of methylene blue in the presence of Ag-doped ZnO nanoparticles is nearly 98.5% after exposing 100 min. The ultraviolet lamp was used as the light source for photocatalyst degradation. The disc diffusion method was chosen to study the antibacterial activity of as-synthesized ZnAgO nanoparticles. Antibacterial activity of Zn0.95Ag0.05O nanoparticles against Staphylococcus aureus and Escherichia coli revealed that the as-synthesized ZnAgO nanoparticles were efficient in inhibition of bacterial growth.  相似文献   

15.
TiO2 nanoparticles and their application in packaging systems have attracted a lot of attention because of its antimicrobial activity. In this work, effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene (PE)-based film was investigated. Results indicated that the antibacterial activity of TiO2-incorporated PE films should be due to the killing effect property of TiO2 nanoparticles against microorganisms. The TiO2-incorporated PE film exhibited more effective antibacterial activity for Staphylococcus aureus. The antibacterial activity to inactivate Escherichia coli or S. aureus was improved by UV irradiation. The inhibition ratio of TiO2-incorporated PE films sample irradiated for 60 min by UV light was improved significantly, which were 89.3% for E. coli and 95.2% for S. aureus, respectively, compared to that of TiO2-PE film without UV irradiation. The analysis of physical properties revealed that TiO2 nanoparticles increased the tensile strength and elongation at break of PE-based film. The climate resistance of nano-TiO2 films is greatly enhanced, compared to that of the blank PE film. Water vapor transmission increased from 18.1 to 24.6 g/m2·24 h with the incorporation of TiO2 nanoparticles. Results revealed that PE based film incorporating with TiO2 nanoparticles have a good potential to be used as active food packaging system.  相似文献   

16.
《Journal of Catalysis》2005,229(1):136-143
The structure of Cu/SiO2 and Cu/ZnO/SiO2 catalysts was studied after reduction at 450–1300 K. The influence of the ZnO promoter on the exposed Cu surface area and metal cluster size was determined by N2O chemisorption and X-ray diffraction. After reduction at 450 K, the metal surface area amounted to 9 m2/gcat for both catalysts. Oxygen uptake during N2O chemisorption increased significantly up to reduction temperatures of 800–900 K. This increase was most prominent for the ZnO-promoted catalyst, although no oxygen uptake was observed for a similarly treated ZnO/SiO2 sample. The behaviour of the promoted catalyst can be explained by formation of Zn0, surface alloying, and segregation of ZnOx species on top of Cu clusters. The high thermostability of the catalysts was confirmed by in situ XRD measurements. The Cu crystallite size in both catalysts was about 4 nm, and did not increase when the reduction temperature was raised to 1100 K for 1 h.  相似文献   

17.
The antibacterial properties of medical polyethylene (PE) were enhanced by coating with triclosan or bronopol and plasma immersion ion implantation (PIII). O2 plasma was first employed to produce a more hydrophilic surface on the PE, followed by argon or hydrogen plasma treatment to enhance the coating of triclosan or bronopol onto the surface. The modified surfaces were characterized by XPS, FTIR, SEM, and contact angle measurements. The antibacterial properties were evaluated utilizing the method of plate-counting of Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative). Our experimental results show that the plasma-modified PE with triclosan exhibits excellent antibacterial properties. Even after 6 weeks, the antibacterial effects against E. coli and S. aureus remain at high levels of 99.9 and 68.4%. The plasma-modified PE with bronopol has better antibacterial performances against E. coli and S. aureus in the beginning. Afterwards, the antibacterial effects degrade relatively rapidly. Our results reveal that non-reactive argon plasma was better than reactive hydrogen plasma in improving the antibacterial properties of PE. Bacterial adhesion on the modified samples was also investigated and the number of active adhered bacteria was observed to be always low.  相似文献   

18.
《Ceramics International》2023,49(12):20118-20126
When nanomaterials with antibacterial properties were sent to the infected area, it was predicted that infection and related complications could be prevented. The nanoparticles can be designed to possess magnetic and luminescence (magneto-luminescent) properties to be effectively targeted and localized at the infection foci without dispersing into the body. Simultaneously, the magneto-luminescent characteristic of particles allows visualization and confirmation of localized particles at the desired area. In this regard, there are no studies on the use of antibacterial magneto-luminescent bioactive glass for orthopedic applications and the treatment of orthopedic device-related infections. In this study, antibacterial magneto-luminescent 58S bioactive glasses were synthesized by the modified Stöber using coupled with a layer-by-layer assembly approach to possess core/shell particle morphology. SPION/Bioactive glass nanoparticles had an average size of 50 nm and displayed superparamagnetic behavior. While the saturation magnetization value (σs) of the undoped 58S sample was 25.32 emu/g, that of the co-doped sample (2% Eu, 2% Zn) was 21.74 emu/g; this showed that the doping slightly reduced the magnetization value. Europium (Eu) doping of SPION/Bioactive glass nanoparticles induced characteristic red emission originating from Eu emissions belonging to 5D07FJ (J = 1–4) transitions and the strongest peak was at 612 nm (electric-dipole transition, 5D07F2). Color chromaticity coordinates confirmed emission in the red region. XPS spectrum revealed the existence of Eu and Zn dopant elements in 58S bioactive glass. After soaking characteristic peaks at 31.74° and 45.43° belonging to the hexagonal hydroxyapatite phase were detected in the XRD data, confirming the SEM images. 2% Eu doped SPION/Bioactive glass nanoparticles had the highest osteoblast viability up to 7 days in vitro, while doping the samples with 2% zinc did not yield bone cell viability as high as the Eu doped ones. Importantly, Eu doped SPION/Bioactive glass nanoparticles inhibited gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) growth up to 48 h in vitro. The results showed that Eu doping of SPION/Bioactive glass nanoparticles increased osteoblast viability and inhibited bacterial growth, while possessing superparamagnetic properties and exhibiting red luminescence.  相似文献   

19.
In the present study, silver-doped silica thin films on glazed surface of ceramic tiles were well prepared by sol–gel method to achieve antibacterial activity. Thermal treatment was done in the air at 1100 °C for two hours. The Ag/SiO2 thin films were investigated through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and wavelength dispersive spectrometry (WDS). Atomic absorption spectroscopy (AAS) was used for the quantitative determination of the silver ion concentration being released from Ag/SiO2 films over a 24 day period. The antibacterial effects of Ag/SiO2 thin films against Escherichia coli and Staphylococcus aureus were also examined. From the analysis results, it was found that high temperature treated coating consists of two phases of SiO2 and Ag based on the trapping of the Ag phase in the silica matrix. The presence of Ag elements on the surface of the coated tiles, were also observed. Thermal treatment at high temperatures caused sharp XRD peaks and high crystallinity in this system. Ag+ ions were released constantly and the mean release rate (±SD) was 0.104 ±0.01 μg/ml during 24 days. Coating films exhibited an excellent antibacterial performance against both bacterium.  相似文献   

20.
Zn1−xTixO (x = 0, 0.01, 0.03 and 0.05) nanoparticles were prepared by high-energy ball milling at 400 rpm. The milled powders were characterized by X-ray diffractometer (XRD) and the results exhibited that Ti-doped ZnO nanoparticles consisted of single phase with hexagonal structure when the mixtures of ZnO and TiO2 powders were milled for 20 h. The crystallite size reduced as a function of the doping content and milling time from 1 to 10 h then increased after milling for 20 h and when the annealing temperature increased. The strain changed inversely to the crystallite size. A wider band-gap was obtained by increasing the doping content and annealing temperature because of a reduction in defect concentration. Both ZnO- and Ti-doped ZnO nanoparticles caused damage to S. aureus, E. coli, P. mirabilis, S. typhi and P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号