首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Radionuclides from past uranium mining in rivers of Portugal   总被引:2,自引:0,他引:2  
During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, D?o, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiri?a confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.  相似文献   

2.
Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226Ra from the uranium decay series and 228Ra from the thorium series. Approximately 40% of the total amount of radium remains underground as radioactive deposits, but 225 MBq of 226Ra and 400 MBq of 228Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Technical measures such as inducing the precipitation of radium in gobs, decreasing the amount of meteoric inflow water into underground workings, etc. have been undertaken in several coal mines, and as a result of these measures, the total amount of radium released to the surface waters has diminished by about 60% during the last 5-6 years. Mine water can have a severe impact on the natural environment, mainly due to its salinity. However, associated high levels of radium concentration in river waters, bottom sediments and vegetation have also been observed. Sometimes radium concentrations in rivers exceed 0.7 kBq/m3, which is the permitted level for waste waters under Polish law. The extensive investigations described here were carried out for all coal mines and on this basis the total radium balance in the effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given us an opportunity to study radium behaviour in river waters and to assess the degree of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in the power and coal industries in Poland. As a result of the combustion of coal in power plants, low-radioactive waste materials are produced, with 226Ra concentration seldom exceeding a few hundreds of Bq/kg. A different situation is observed in coal mines, where, as a result of precipitation of radium from radium-bearing waters, highly radioactive deposits are formed. Sometimes the radioactivity of such materials is extremely high; precipitates from coal mines may have radium concentrations of 400,000 Bq/kg--equivalent to 3% uranium ore. Usually, such deposition takes place underground, but sometimes co-precipitation of radium with barium takes place on the surface, in settling ponds and in rivers. Therefore management of solid waste with technologically enhanced natural radioactivity (TENR) is a very important subject.  相似文献   

3.
The advantages of using radionuclides for laboratory studies of environmental processes include the wide range of element concentrations that can be studied, the capability to simultaneously study several isotopes in a single experiment, the direct applicability to the behaviour of radioactive waste or fallout, and the ability to study the mechanisms, reversibility and kinetics of environmental reactions under controlled conditions. These attributes are demonstrated using specific examples drawn from case studies in Australia, including radionuclide fallout onto tropical soils, the association of trace metals with harbour sediments and the behaviour of uranium in natural and contaminated systems.  相似文献   

4.
The work presents the radioecological characterization of the new Brazilian uranium mining and milling site located in a semi-arid region of the country. The process characterization demonstrated that in heap leach plants most of the 226Ra remains in the leached ore. Despite the potential higher availability of radium isotopes in the soils of the studied region the lack of precipitation in that area reduces the leaching/mobilization of the radionuclides. High 226Ra and 228Ra concentrations were found in manioc while 210Pb was significant in pasture. It was suggested that a range from 10(-3) to 10(-1) may conveniently encompass most of the transfer factors (TF) values for soil/plant systems (i.e. involving different cultures, different soils and natural radionuclides). Impacts due to aerial transportation of aerosols and radon generated in the mining were proved to be minimal and restricted to an area not greater than 15 km2. Finally, uranium complexation by carbonates was shown to be the main mechanism responding for the elevated radionuclide concentration in groundwater.  相似文献   

5.
As a result of former uranium mining and milling activities at ?irovski vrh, Slovenia, 0.6 million tons of uranium mill tailings (UMT) were deposited onto a nearby waste pile Boršt. Resulting enhanced levels of natural radionuclides in UMT could pose threat for the surrounding environment. Therefore, sequential extraction protocol was performed to assess mobility and bioavailability of 238U, 234U, 230Th and 226Ra in soils from the waste pile and its surrounding. The radionuclides associated with exchangeable, organic, carbonate, Fe/Mn oxides and residual fraction, respectively, were determined. Results showed that the highest activity concentrations for the studied radionuclides were on the bottom of the waste pile. In non-contaminated locations, about 80% of all radionuclides were in the residual fraction. Considering activity concentrations in the UMT, 238U and 234U are the most mobile. Mobility of 226Ra is suppressed by high sulphate concentrations and is similar to mobility of 230Th.  相似文献   

6.
Mineral extraction activities, such as those conducted by oil, gas and coal industries, are widespread throughout the Arctic region. Waste products of these activities can result in significant contributions to the radioactive burden of the surrounding environment due to increased concentrations of naturally occurring radioactive materials (NORM) to levels that would not normally be found in the environment. Coal mining operations commenced in the early 1900s on Svalbard and have been conducted at a variety of locations on the archipelago since then. Coal contains radionuclides of the uranium and thorium series as well as 40K. Extraction and processing of coal can result in releases of these radionuclides to the broader environment with subsequent impact on the human and non-human inhabitants of the area. This paper presents the results of a study on environmental radioactivity resulting from historical coal mining operations conducted at Ny-Alesund, Spitsbergen, in the Svalbard archipelago. Activity concentrations of radionuclides found in materials associated with these operations are presented as well as the results of a spatial dosimetric survey conducted over an area affected by coal mining.  相似文献   

7.
Fifty-two soil samples in the vicinity of a coal-fired power plant (CFPP) in Figueira (Brazil) were analyzed. The radionuclide concentration for the uranium and thorium series in soils ranged from <9 to 282 Bq kg(-1). The range of 40K concentration in soils varied from <59 to 412 Bq kg(-1). The CFPP (10 MWe) has been operating for 35 years and caused a small increment in natural radionuclide concentration in the surroundings. This technologically enhanced natural radioactivity (TENR) was mainly due to the uranium series (234Th, 226Ra and 210Pb) and was observable within the first kilometer from the power plant. The CFPP influence was only observed in the 0-25 cm soil horizon. The soil properties prevent the radionuclides of the 238U-series from reaching deeper soil profiles. The same behavior was observed for 40K as well. No influence was observed for 232Th, which was found in low concentrations in the coal.  相似文献   

8.
The radioactive waste (RAW) storage site at Andreeva Bay in the Russian Northwest has experienced radioactive contamination both as a result of activities carried out at the site and due to incidents that have occurred there in the past such as accidental releases of radioactive materials. The site is an interesting case study for decommissioning due to the extremely large amounts of radioactivity present at the site and the conditions under which it is stored; very little has been previously published in the scientific literature about this site. This paper complements the paper describing dose rates at Andreeva Bay which is published in this issue of Journal of Environmental Radioactivity by the same authors. This study presents new data related to the activity concentrations of (137)Cs and (90)Sr in surface soils and measurements of alpha- and beta-particle fluxes taken at different areas around the site. Limited data on 60Co is also presented. The results of the study indicate that the main areas of site contamination are associated with the former spent nuclear fuel storage facility at Building 5, due to accidental discharges which began in 1982. Substantial contamination is also observed at the solid radioactive waste storage facilities, probably due to the ingress of water into these facilities. More than 240 samples were measured: maximum contamination levels were 1 x 10(6)Bq/kg (137)Cs (mean value 4.1 x 10(5)Bq/kg) and 4 x 10(6)Bq/kg (90)Sr (mean value 1.2 x1 0(5)Bq/kg). Localised patches of alpha and beta contamination were also observed throughout the site.  相似文献   

9.
The activity concentrations of uranium and thorium have been determined in soils and mineral sands from the Nigerian tin mining area of Bisichi, located in the Jos Plateau, and from two control areas in Nigeria (Jos City and Akure) using high-purity germanium detectors (HPGe). High resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICP-MS) was used to determine uranium and thorium in liquids and foodstuffs consumed locally in the mining area. The activities of uranium and thorium measured in the soils and mineral sands from Bisichi ranged from 8.7 kBq kg−1 to 51 kBq kg−1 for 238U and from 16.8 kBq kg−1 to 98 kBq kg−1 for 232Th, respectively. These values were significantly higher than those in the control areas of Jos City and Akure and than the reference values reported in the literature. They even exceeded the concentrations reported for areas of high natural radioactive background. Radionuclide concentrations in samples of the local foodstuffs and in water samples collected in Bisichi were found to be higher than UNSCEAR reference values. The results reveal the pollution potential of the mining activities on the surrounding areas.  相似文献   

10.
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.  相似文献   

11.
Phosphogypsum, a waste by-product derived from the wet process production of phosphoric acid, represents one of the most serious problems facing the phosphate industry in Florida today. This by-product gypsum precipitates during the reaction of sulfuric acid with phosphate rock and is stored at a rate of about 40 million tons per year on several stacks in central and northern Florida. The main problem associated with this material concerns the relatively high levels of natural uranium-series radionuclides and other impurities which could have an impact on the environment and prevent its commercial use. We have studied the potential release of radionuclides from phosphogypsum by: (i) analysis of stack fluids, groundwaters, and soils associated with gypsum stacks; and (ii) geochemical modeling. Stack fluids were observed to be very high in dissolved uranium and 210Pb with only moderate concentrations of 226Ra. Underlying soils tend to be enriched in U and 210Pb indicating precipitation when acidic stack fluids enter a buffered environment. Modeling results showed significant increases in radionuclide complexes with sulfate and phosphate, resulting in relatively mobile uncharged or negatively charged solution species within the stacks with likely precipitation of multicomponent solids with increasing pH below the stack. Our evidence thus suggests that, while phosphogypsum stacks do contain significant quantities of dissolved radionuclides, removal mechanisms appear to prevent large-scale migration of radionuclides to the underlying aquifer.  相似文献   

12.
A big fertilizer industrial complex and a vast extension of phosphogypsum piles (12 km2), sited in the estuary formed by the Odiel and Tinto river mouths (southwest of Spain), are producing an unambiguous radioactive impact in their surrounding aquatic environment through radionuclides from the U-series. The levels and distribution of radionuclides in sediments from this estuarine system have been determined. The analyses of radionuclide concentrations and activity ratios have provided us with an interesting information to evaluate the extension, degree and routes of the radioactive impact, as well as for the knowledge of the different pathways followed for the radioactive contamination to disturb this natural system. The obtained results indicate that the main pathway of radioactive contamination of the estuary is through the dissolution in its waters of the radionuclides released by the industrial activities and their later fixation on the particulate materials. Tidal activity also plays an important role in the transport and homogenization along the estuary of the radioactivity released from the fertilizer plants.  相似文献   

13.
The radionuclide content of various oil shales, shale oils, and retorting waste products has been studied to determine the extent to which the development of this energy resource may perturb the natural radiation environment. Nearly all of the radioactivity in the raw shale is found in the spent shale after retorting. A primary exposure pathway to the public from this radioactivity will be through the release of particulate matter to the atmosphere during various mining, crushing, and retorting operations. Since the activity of this material is close to that of normal soil, however, the expected radiological impact is small.  相似文献   

14.
The Swedish regulations concerning disposal of clinical radioactive waste are currently under revision and a graded approach is proposed for risk limitation purposes. To assist the revision procedures, a screening study was performed to estimate public exposures from liquid releases from hospitals to public sewers. The results showed that doses to sewage workers were above the dose constraint of 100muSva(-1) especially for (131)I and (99m)Tc. Hence, a dynamic model, LUCIA, was developed for realistic assessments in which radionuclide transportation in sewers was modelled. Probabilistic simulations were performed to obtain probability distributions of radionuclide concentrations in sludge. Concurrently, estimates of the effective doses to sewage workers decreased significantly and were below 10muSva(-1) except for (111)In and (131)I. However, the Kd-coefficients representing the partition of radioactivity between water and sludge in sewers are highly uncertain for (111)In. As shown by sensitivity studies, these values are the major determinant of the exposures in sewers.  相似文献   

15.
Protection of the environment post-mining is a key objective of rehabilitation, especially where runoff and erosion from rehabilitated mine sites could potentially lead to contamination of the surrounding land and watercourses. As part of an overall assessment of the success of rehabilitation at the former Nabarlek uranium (U) mine, an appraisal of stable lead (Pb) isotopes, radionuclides and trace metals within sediments and soils was conducted to determine the off site impacts from a spatial and temporal perspective. The study found localised areas on and adjacent to the site where soils had elevated levels of trace metals and radionuclides. Lead isotope ratios are highly radiogenic in some samples, indicating the presence of U-rich material. There is some indication that erosion products with more radiogenic Pb isotope ratios have deposited in sediments downstream of the former ore body. However, there is no indication that the radiogenic erosion products found on the mine site at present have significantly contaminated sediments further downstream of Cooper Creek.  相似文献   

16.
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.  相似文献   

17.
Phosphogypsum is a waste by-product of the phosphate fertilizer industry, which is usually disposed in the environment because of its restricted use in industrial applications. Physico-chemical conditions existing in stack fluids and leachates are of major importance and determine solubility and redox stability of phosphogypsum, as well as radionuclide release from stacks to terrestrial environments. The aim of this study is to assess the effect of key parameters (e.g. ionic strength, temperature, pH) on the solubility of phosphogypsum. Phosphogypsum sampling and in-situ measurements were carried out at a coastal stack in Cyprus, solubility experiments were performed in simulated laboratory systems and thermodynamic calculations by means of MINTEQA2, an equilibrium speciation model. Generally, increasing ionic strength and temperature leads to increased phosphogypsum solubility, with the former being much more effective. The increased solubility of phosphogypsum in saline solutions is attributed solely to ionic strength effects on the activity of ionic species in solution and no solid phase transformations could be observed. The effect of pH on phosphogypsum solubility seems to be insignificant at least in a pH range between 4 and 8. Regarding uranium levels, there is a strong correlation between salinity and uranium concentration and linear correlation between phosphogypsum solubility and uranium levels in stack solutions, indicating the incorporation of uranium into the gypsum lattice and the formation of a solid solution.  相似文献   

18.
A project to characterize the radionuclide and chemical components in natural spring waters in the vicinity of Saratoga Springs, New York (USA) has been completed. As a result of the measured radionuclide and chemical content, eight springs were labeled as mineral waters, whereas three springs contained very low concentrations of these components. The mineral waters were highly enriched in alkaline and alkaline-earth elements, as well as chloride ions. Three isotopes of radium ((224)Ra, (226)Ra, (228)Ra) were detected in the mineral waters and reached concentrations of 1, 20, and 2 Bq/L, respectively. Overall, the (226)Ra isotope constituted about 80% of the total radioactivity measured in the water samples. Dissolved uranium concentrations in the mineral waters were very low (mean approximately 50 mBq/L).  相似文献   

19.
A gamma-ray survey and analysis of 16 riverbed samples from the Reedy River watershed near Simpsonville, SC were conducted and compared with national and international studies of primordial radionuclides. The study reported here follows on a recent discovery of anomalously high uranium concentrations in several private well waters in the area. An HPGe spectrometer was used for quantification of gamma emitting radionuclides in the sediments. All sediments contained radionuclides from the uranium and thorium series as well as (40)K. Uranium-238 concentrations in sediment samples ranged from 11.1 to 74.2Bqkg(-1). The measured radionuclide concentrations were compared with data from UNSCEAR and NURE reports. The river and stream sediment data were augmented by in situ NaI(Tl) gamma-ray spectrometer measurements. Comparisons between the ex situ and in situ measurements indicate equivalently distributed uranium in the surface soils and stream sediments, the source of which is likely attributed to the monazite belts that are known to exist in the area.  相似文献   

20.
Concentrations of radionuclides were measured in soils from a grid of locations surrounding the US Department of Energy Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and from a grid on a reference site approximately 20 km southeast of the WIPP site. Each of the two grids has 16 sampling locations (grid nodes) systematically distributed within an area of 16.580 ha. Sampling was conducted prior to the arrival of the first waste shipment at WIPP. Thus, the 137Cs and 23,240Pu in the soil are expected to have been deposited as global fallout, although the Gnome Site, 8.8 km southwest of the WIPP, is also a potential source of 239,240Pu and fission products. The reference grid has significantly higher concentrations of fallout and natural radionuclides than the WIPP grid. Up to 80% of the total variability in radionuclide concentrations across the two grids is attributable to differences between grid nodes. Differences between replicates within a location account for 44-50% of the variability in concentrations of the uranium isotopes, but only 11-17% of the variability in the concentrations of the other radionuclides. Samples having similar abundance of radionuclides were spatially aggregated across the terrain. The activity concentrations of the radionuclides were strongly correlated with the concentrations of Al and Pb, and with the percentages of sand, silt and clay in the soil. Normalizing radionuclide concentrations to the concentration of Al or percent fine particles can help adjust for differences in soil textures among samples and facilitate the detection of gradients or temporal changes in soil concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号