首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The region of the junction and interaction between the East European Craton (EEC) and the West Arctic Craton (WAC) is regarded as a complexly built zone or assembly of both the volumetric and dividing linear tectonic elements: the Trollfjord–Rybachi–Kanin (TRK) Lineament, the pericratonic subsidence zone of the EEC, the Karpinskii Lineament, the Murmansk Block of the Fennoscandian (Baltic) Shield, and the Kolmozero–Voronya Zone, which are briefly characterized in this paper. Evidences of thrusting have been established not only in the TRK Suture Zone and on the Rybachi Peninsula, which represent a fragment of the Timanides fold–thrust belt, but also to the southwest, in the Upper Riphean and Vendian terrigenous sequences making up the Sredni Peninsula and related to the pericratonic trough of the VEC. Two phases of fold–thrust deformations with elements of left-lateral strike-slip offset pertaining to the activity and evolution of the lineament suture dividing the Sredni and Rybachi peninsulas have been recorded. The variously oriented fault–fold systems within this fault zone are evidence for multistage deformation and can be explained by an at least twostage change in the kinematics that control displacement along the fault. The disintegrated granitic massifs of the Archean crystalline basement tectonically squeezed out in the upper crust as protrusions are localized within TRK Fault Zone. Plagiogranitic bodies, which underwent superposed fault-fold deformations of both kinematic stages, are an evidence of the vigorous tectonic event that predated folding and two-stage strike-slip displacement along the TRK Fault—by thrusting of Riphean sequences from north to south toward the Archean craton. The nappe–thrust regional structure was formed at this stage; elements of it have been recognized in the Sredni, Rybachi, and Kanin peninsulas. The main stages of tectonic evolution in the junction zone between the EEC and the WAP have been revealed and substantiated.  相似文献   

2.
Materials pertaining to Mesozoic granitoids in the Central Asian and Pacific Belts junction area and the adjacent platforms are summarized. Maps of the location of massifs, the extensiveness of granitoid magmatism, the manifestations of Mesozoic plumes, and the relief of the asthenosphere surface have been compiled. The locations of the major ore deposits are plotted on the maps. The distribution chart has been constructed for these deposits in the coordinates of the crust and lithosphere. The depth of the occurrence of the sources for large and superlarge gold, tin, polymetallic, molybdenum, tungsten, and uranium deposits has been estimated. Areas showing promise for the discovery of large deposits are defined.  相似文献   

3.
4.
Currently ranking as the largest producer of gold in the world, China's gold reserves are spread over 200 major gold deposits and several minor deposits. A large part of these belong to the late Mesozoic gold deposits in the North China Craton (NCC) that occur along craton margins, as well as within the cratonic interior in reactivated paleo sutures, and show a close spatio-temporal relationship with zones of lithospheric thinning and craton destruction. Here we integrate and evaluate geophysical information from the NCC through an analysis of receiver function and tomography that suggest mantle upwelling accompanied by lower crustal or lithospheric delamination. Our results identify that the major gold belts in the NCC are largely located above zones of mantle upwelling and craton destruction. The faults and paleo sutures provided the pathways for migration of ore-bearing fluids, with the granitoids offering favorable conditions for gold deposition.  相似文献   

5.
6.
7.
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high‐grade tonalitic–trondhjemitic–granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P–T estimates using TWQ thermobarometry are: 900–950 °C and 8.0–8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700–800 °C and 6.0–7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550–650 °C and 5.3–6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P–T estimates define a clockwise P–T path involving near‐isothermal decompression for the Fuping Complex, similar to the P–T path estimated for the metapelitic gneisses. The inferred P–T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P–T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti‐clockwise P–T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P–T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma.  相似文献   

8.
The study addresses the space distribution of lithospheric density contrasts in 3D and 2D surface (spherical) sources of gravity anomalies to depths of 120 km below the geoid surface and their relationship with shallow deformation and Archean, Early Paleozoic, and Late Mesozoic geodynamic environments. The lithospheric section in northeastern Transbaikalia and the Upper Amur region includes two layers of low-density gradients attendant with low seismic velocities and low electrical resistivity. The lower layer at depths of 80–120 km is attributed to an asthenospheric upwarp that extends beneath the North Asian craton from the Emuershan volcanic belt and the Songliao basin. The concentric pattern of density contrasts in the middle and lower crust beneath the Upper Amur region may be produced by the activity of the Aldan-Zeya plume, which spatially correlates with the geometry of the asthenospheric upwarp as well as with the regional seismicity field, magnetic and heat flow anomalies, and stresses caused by large earthquakes and recent vertical crustal movements. The relationship between shallow and deep structures in the crust and upper mantle bears signature of horizontal displacement (subduction) of the lower crust of the Baikal-Vitim and Amur superterranes beneath the North Asian craton.  相似文献   

9.
为了研究柴北缘宗务隆构造带印支期构造演化特征,选取宗务隆构造带内具代表性的晒勒克郭来花岗闪长岩和察汗诺花岗闪长岩进行了岩石学、年代学与地球化学研究。锆石SHRIMP U Pb年代学结果显示,晒勒克郭来花岗闪长岩与察汗诺花岗闪长岩分别形成于(249.2±2.6) Ma、(242.7±1.9) Ma和(243.5±2.4) Ma,为早三叠世,也更加证实柴北缘印支期构造岩浆活动的存在。两岩体均相对富SiO2、Na2O和Al2O3,A/CNK分别为1.02~1.06和1.01~1.05,里特曼指数分别为1.54~1.73和1.07~1.61,属于弱过铝质中钾高钾钙碱性I型花岗岩; K/Rb值平均分别为234和279,分异指数分别为72.95~76.06和64.49~76.42,两岩体原始岩浆结晶分异不充分;LREE/HREE分别为6.83~9.70和3.29~7.40,弱的Eu负异常或正异常;在微量元素原始地幔标准化蛛网图上,两岩体明显富集Rb、U、La、Pb、Sr等大离子亲石元素,亏损Nb、P、Ti等高场强元素;察汗诺花岗闪长岩中发育中基性暗色包体,包体和寄主岩中见斜长石、角闪石等矿物结构和成分不平衡现象,说明其为岩浆混合成因。综上所述,两岩体应为印支期柴北缘活动大陆边缘俯冲碰撞作用导致幔源岩浆底侵与下地壳部分重融形成的壳幔混合岩浆形成的产物。对比柴北缘宗务隆构造带与柴东鄂拉山构造带内岩浆岩地质特征认为,宗务隆构造带的形成可能与西秦岭沿共和坳拉谷强烈斜向碰撞柴达木地块有关。  相似文献   

10.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   

11.
秦岭造山带位于华北板块与扬子板块之间,造山带内发育若干条近平行的韧性剪切带和夹持其间的岩块,它们和次级断裂组成特有的构造图案。虽有后期脆性断裂的叠加,但依然可以看出这些断裂组成了具有规律性的构造图案,反映出不同的构造型式和构造活动。由于秦岭造山带山高林密,有些地段很难人力进行考察,给该区的构造研究增加了难度。为此,本文利用Google Earth软件获取高分辨率的卫星图像,对其进行影像处理和构造解译,分析了北秦岭地区的断裂构造的变形特征及组合样式,从造山带尺度研究大型断裂带的变形特征、样式图案,探求其运动方式和演化规律。  相似文献   

12.
Detailed geochemical, isotopic, and geochronological studies were carried out on felsic volcanic rocks from the southern part of the North Baikal volcanoplutonic belt. U-Pb zircon dating showed that the rocks previously ascribed to a single stratigraphic unit (Khibelen Formation of the Akitkan Group or the Khibelen Complex) have significant age differences. The Khibelen Formation was found out to include both the oldest dated rocks (1877.7 ± 3.8 Ma) of the North Baikal belt and the younger volcanic rocks (1849 ± 11 Ma). Two other dated volcanic rocks have intermediate ages (1875 ± 14 and 1870.7 ± 4.2 Ma). It was established that the volcanic rocks from various areas in the southern part of the North Baikal belt not only have different ages but also differ in geochemical and isotopic signatures. In particular, the felsic volcanic rocks from various sites show the following variations in trace-element composition: from 220–280 to 650–717 ppm Zr, from 8–12 to 54–64 ppm Nb, and from 924–986 to 1576–2398 Ba. The ?Nd obtained for felsic volcanic rocks and comagmatic granitoids from various areas in the southern part of the North Baikal belt vary, respectively, from ?1.7 to ?2.8 and from ?8.0 to ?9.2. Based on geochemical and isotopic signatures, the felsic volcanic rocks in various areas of the southern part of the North Baikal volcanoplutonic belt were formed via the melting of a Mesoarchean crustal source of tonalite composition with contribution of variable amounts of juvenile mantle material at different magma generation conditions. Isotopic data indicate that the contribution of juvenile mantle material to their sources varied from ~33–40 to 77–86%. The maximal calculated temperatures of the parent melts for felsic volcanic rocks were 908–951°C, and the lowest temperatures were 800–833°C. The geochemical signatures of dacites with an age of 1877.7 ± 3.8 Ma such as high Th (46–51 ppm) and La (148–178 ppm) contents indicate that these rocks, along with Mesoarchean granitoid and juvenile mantle material, contain an upper crustal component with high Th and LREE contents. Extremely low Y and Yb contents in these dacites implies their formation at pressures of ~ 12–15 kbar in equilibrium with garnet-bearing residue. These rocks were presumably formed in the collisional-thickened crust at the earliest stages of its collapse, possibly during syncollisional collapse, with additional hear input to the lower crust. Other felsic rocks are geochemical analogues of A-type granites and were formed during the subsequent stages of collapse (post-collisional collapse).  相似文献   

13.
《International Geology Review》2012,54(13):1464-1477
We propose that inherited Neoproterozoic zircons in Mesozoic igneous rocks from the eastern portion of the North China craton (NCC) were initially derived from the Yangtze/South China block, rather than from the NCC itself. The mechanism that introduced these zircons into the NCC was likely tectonic underplating during Triassic continental subduction/collision of the Yangtze block beneath the NCC. The addition of abundant crustal materials represented by the exotic zircons, probably along the Moho or weak interfaces within the NCC crust, led to the crustal thickening of the NCC. These sialic materials contributed significantly to the Mesozoic igneous rocks, either as source rocks or as contaminants of magmas generated during an extensional environment following crustal thickening. Crustal thickening was spatially linked to lithospheric thinning, with both occurring mainly in the eastern segment of the NCC, suggestive of an intrinsic relationship between thickening and thinning events during Mesozoic evolution of the NCC.  相似文献   

14.
张长厚 《地学前缘》2009,16(4):203-214
华北克拉通破坏问题,是通过对古生代时期和新生代以来华北东部岩石圈厚度、热状态、岩石圈地幔组成与时代等特征的比较研究中,逐渐认识到的一个重大的大陆构造动力学问题。岩石圈厚度的巨大变薄是克拉通破坏的重要标志之一,已有的构造动力学模型从不同角度着重讨论了克拉通岩石圈是如何减薄的问题,但由于岩石圈减薄远不是克拉通破坏的全部,因此,即使已有动力学模型可以对减薄过程给出比较合理的解释,也还难以成为克拉通破坏的综合动力学模型。文中针对目前流行的华北克拉通岩石圈减薄动力学模型存在的问题,提出了在构建克拉通破坏综合动力学模型时需要关注的一些主要构造问题:(1)从构造变形、沉积作用、火山活动及其事件序列特征角度,甄别和评价主动裂谷作用和被动裂谷作用在克拉通破坏过程中所发挥的作用;热 化学侵蚀岩石圈减薄模型可能需要与上述裂谷作用模型相结合,才可能成为克拉通岩石圈破坏的候选模型。(2)从拆沉相关岩浆侵入和火山活动时空演变规律、地壳表层快速隆起及相关沉积作用和构造变形、地壳热状态异常、拆沉引起的热弱化地壳对区域应力场的响应、拆沉导致的局部应力场模拟等方面展开研究,检验、充实或修正岩石圈拆沉模型。(3)从区域构造变形和相关沉积作用、火山活动相结合的综合研究角度,探索华北克拉通的破坏是在古老克拉通基础上的直接破坏,还是在古老克拉通基础上经历了造山作用过程之后的造山带伸展垮塌,这是涉及华北克拉通破坏动力学模型建立的根本问题之一。  相似文献   

15.
16.
Andrei I. Kozhurin   《Tectonophysics》2004,380(3-4):273-285
The active faults known and inferred in the area where the major Pacific, North American and Eurasian plates come together group into two belts. One of them comprises the faults striking roughly parallel to the Pacific ocean margin. The extreme members of the belt are the longitudinal faults of islands arcs, in its oceanic flank, and the faults along the continental margins of marginal seas, in its continental flank. The available data show that all these faults move with some strike-slip component, which is always right-lateral. We suggest that characteristic right-lateral, either partially or dominantly, kinematics of the fault movements has its source in oblique convergence of the Pacific plate with continental Eurasian and North American plates. The second belt of active faults transverses the extreme northeast Asia as a continental extension of the active mid-Arctic spreading ridge. The two active fault belts do not cross but come close to each other at the northern margin of the Sea of Okhotsk marking thus the point where the Pacific, North American and Eurasian plates meet.  相似文献   

17.
Primary gold deposits in Burkina Faso occur in Paleoproterozoic Birimian belt formations (2.0 Ga). Mineralization was synchronous with regional metamorphism and deformation, and is either hosted within, or is adjacent to, quartz-bearing veins. These are classical characteristics of epigenetic gold deposits in Precambrian metamorphic terranes and permit to classify the mineralized sites from Burkina Faso as orogenic-type gold deposits. A review of data collected over the past decade by our team permits to recognize two main styles of gold mineralization: (1) Quartz-vein hosted; this style occurs in all lithologies, the veins are deformed and gold is principally concentrated within the veins, associated with either sulfides or tourmaline. (2) Disseminated; this style occurs exclusively in albitites (and to a lesser extent listvenites) with gold occurring mainly within alteration halos of generally undeformed quartz-albite-carbonate vein. Quartz-vein and disseminated styles of mineralization can be associated within the same deposit. Albitites and listvenites are alteration products of mainly calc-alkaline igneous rocks of felsic to ultramafic composition, respectively. The predominant alteration assemblage consists of chlorite, albite, carbonate, and pyrite. Sulfides occur as fine masses commonly in the alteration halos close to vein margins and consist mainly of pyrite and arsenopyrite, depending on host-rock composition. Gold occurs as free native metal and, locally, in form of tellurides, in fissures or as inclusions within pyrite and arsenopyrite. Two main populations of fluid inclusions are associated with the gold deposits, independently of the mineralization style: (1) carbonic inclusions consisting of up to 90 mol% CO2 (plus N2 and CH4) and (2) aqueous-carbonic fluid inclusions with moderate salinities. Interestingly, the disseminated gold style deposits of Burkina Faso, which have the highest economic potential, show strong similarities with the world-class Ashanti deposit, in neighboring Ghana.  相似文献   

18.
Analysis of forms of articulation of the Indian and Afro-Arabian platforms with folded structures suggests the following genetic (tectonic) sequence of their types: from the pericratonal (incomplete or arrested) in the east, through the “reductional” (transitional) in the middle, to the “classical”" (fully evolved) in the west — or the territory formerly occupied by the Tethys. -- V.P. Sokoloff  相似文献   

19.
20.
The structure and tectonics of the Aga Zone are considered. It is shown that this zone is a system of tectonic nappes thrust over the Argun microcontinent. The zone is composed of two rock complexes related to the Variscan and Kimmerian structural stages. The Variscan stage (Silurian(?)-Early Carboniferous) comprises structural elements that correspond to the continental slope; the oceanic basin proper; the active continental margin, including an accretionary wedge; and an island arc and backarc basin. The Devonian age of the ophiolites of the Shilka Belt is specified. The formation of this set of tectonic units is related to the Middle Paleozoic pulse of the opening of the Mongolia-Okhotsk paleobasin. The Kimmerian stage (Middle Carboniferous-Early Jurassic) is characterized by a different style of structural evolution. A system of separate troughs filled with flyschoid sequences was formed on the Variscan basement. The unstable setting related to shortening and closure of the paleobasin brought about the spatial migration of sedimentation zones and the development of intraformational breaks in sedimentation, as well as unconformities. This stage was completed in the Lias by the general uplift of the territory and the formation of Jurassic and Cretaceous mollase along its periphery. The Aga allochthonous mass was ultimately formed in the Middle Jurassic. This event is recorded in emplacement of Middle-Late Jurassic granitic plutons that blocked the nappes. The granitic-metamorphic layer was formed in the Paleozoic and Early Mesozoic at the margin of the Aga Zone upon its conjugation with the adjacent continental masses; this layer is related to crustal anatexis. The bulk of the granitic rocks of the Aga Zone were generated in the Middle and Late Jurassic due to the collision of the North Asian continent with the Argun microcontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号