首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Materials pertaining to Mesozoic granitoids in the Central Asian and Pacific Belts junction area and the adjacent platforms are summarized. Maps of the location of massifs, the extensiveness of granitoid magmatism, the manifestations of Mesozoic plumes, and the relief of the asthenosphere surface have been compiled. The locations of the major ore deposits are plotted on the maps. The distribution chart has been constructed for these deposits in the coordinates of the crust and lithosphere. The depth of the occurrence of the sources for large and superlarge gold, tin, polymetallic, molybdenum, tungsten, and uranium deposits has been estimated. Areas showing promise for the discovery of large deposits are defined.  相似文献   

2.
The region of the junction and interaction between the East European Craton (EEC) and the West Arctic Craton (WAC) is regarded as a complexly built zone or assembly of both the volumetric and dividing linear tectonic elements: the Trollfjord–Rybachi–Kanin (TRK) Lineament, the pericratonic subsidence zone of the EEC, the Karpinskii Lineament, the Murmansk Block of the Fennoscandian (Baltic) Shield, and the Kolmozero–Voronya Zone, which are briefly characterized in this paper. Evidences of thrusting have been established not only in the TRK Suture Zone and on the Rybachi Peninsula, which represent a fragment of the Timanides fold–thrust belt, but also to the southwest, in the Upper Riphean and Vendian terrigenous sequences making up the Sredni Peninsula and related to the pericratonic trough of the VEC. Two phases of fold–thrust deformations with elements of left-lateral strike-slip offset pertaining to the activity and evolution of the lineament suture dividing the Sredni and Rybachi peninsulas have been recorded. The variously oriented fault–fold systems within this fault zone are evidence for multistage deformation and can be explained by an at least twostage change in the kinematics that control displacement along the fault. The disintegrated granitic massifs of the Archean crystalline basement tectonically squeezed out in the upper crust as protrusions are localized within TRK Fault Zone. Plagiogranitic bodies, which underwent superposed fault-fold deformations of both kinematic stages, are an evidence of the vigorous tectonic event that predated folding and two-stage strike-slip displacement along the TRK Fault—by thrusting of Riphean sequences from north to south toward the Archean craton. The nappe–thrust regional structure was formed at this stage; elements of it have been recognized in the Sredni, Rybachi, and Kanin peninsulas. The main stages of tectonic evolution in the junction zone between the EEC and the WAP have been revealed and substantiated.  相似文献   

3.
4.
Currently ranking as the largest producer of gold in the world, China's gold reserves are spread over 200 major gold deposits and several minor deposits. A large part of these belong to the late Mesozoic gold deposits in the North China Craton (NCC) that occur along craton margins, as well as within the cratonic interior in reactivated paleo sutures, and show a close spatio-temporal relationship with zones of lithospheric thinning and craton destruction. Here we integrate and evaluate geophysical information from the NCC through an analysis of receiver function and tomography that suggest mantle upwelling accompanied by lower crustal or lithospheric delamination. Our results identify that the major gold belts in the NCC are largely located above zones of mantle upwelling and craton destruction. The faults and paleo sutures provided the pathways for migration of ore-bearing fluids, with the granitoids offering favorable conditions for gold deposition.  相似文献   

5.
6.
7.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   

8.
9.
Analysis of forms of articulation of the Indian and Afro-Arabian platforms with folded structures suggests the following genetic (tectonic) sequence of their types: from the pericratonal (incomplete or arrested) in the east, through the “reductional” (transitional) in the middle, to the “classical”" (fully evolved) in the west — or the territory formerly occupied by the Tethys. -- V.P. Sokoloff  相似文献   

10.
Andrei I. Kozhurin   《Tectonophysics》2004,380(3-4):273-285
The active faults known and inferred in the area where the major Pacific, North American and Eurasian plates come together group into two belts. One of them comprises the faults striking roughly parallel to the Pacific ocean margin. The extreme members of the belt are the longitudinal faults of islands arcs, in its oceanic flank, and the faults along the continental margins of marginal seas, in its continental flank. The available data show that all these faults move with some strike-slip component, which is always right-lateral. We suggest that characteristic right-lateral, either partially or dominantly, kinematics of the fault movements has its source in oblique convergence of the Pacific plate with continental Eurasian and North American plates. The second belt of active faults transverses the extreme northeast Asia as a continental extension of the active mid-Arctic spreading ridge. The two active fault belts do not cross but come close to each other at the northern margin of the Sea of Okhotsk marking thus the point where the Pacific, North American and Eurasian plates meet.  相似文献   

11.
The structure and tectonics of the Aga Zone are considered. It is shown that this zone is a system of tectonic nappes thrust over the Argun microcontinent. The zone is composed of two rock complexes related to the Variscan and Kimmerian structural stages. The Variscan stage (Silurian(?)-Early Carboniferous) comprises structural elements that correspond to the continental slope; the oceanic basin proper; the active continental margin, including an accretionary wedge; and an island arc and backarc basin. The Devonian age of the ophiolites of the Shilka Belt is specified. The formation of this set of tectonic units is related to the Middle Paleozoic pulse of the opening of the Mongolia-Okhotsk paleobasin. The Kimmerian stage (Middle Carboniferous-Early Jurassic) is characterized by a different style of structural evolution. A system of separate troughs filled with flyschoid sequences was formed on the Variscan basement. The unstable setting related to shortening and closure of the paleobasin brought about the spatial migration of sedimentation zones and the development of intraformational breaks in sedimentation, as well as unconformities. This stage was completed in the Lias by the general uplift of the territory and the formation of Jurassic and Cretaceous mollase along its periphery. The Aga allochthonous mass was ultimately formed in the Middle Jurassic. This event is recorded in emplacement of Middle-Late Jurassic granitic plutons that blocked the nappes. The granitic-metamorphic layer was formed in the Paleozoic and Early Mesozoic at the margin of the Aga Zone upon its conjugation with the adjacent continental masses; this layer is related to crustal anatexis. The bulk of the granitic rocks of the Aga Zone were generated in the Middle and Late Jurassic due to the collision of the North Asian continent with the Argun microcontinent.  相似文献   

12.
The Chek-Chikan Massif is a typical representative of basic magmatism, which is widely spread within the Dzhugdzhur-Stanovoi superterrane. The massif consists of gabbronorites, amphibole gabbros, gabbroanorthosites, and anorthosites. The geochemical similarity of the gabbronorites, amphibole gabbros, and anorthosites suggests their genetic link and allows us to consider them as products of intrachamber differentiation. The main geochemical peculiarity of this rock association is the high degree of the melt fractionation. The rocks of the considered massif are enriched in large ion lithophile elements such as Sr (424–1018 ppm) and Ba (50–754 ppm) and have moderate to low contents of such high-field strength elements as Nb (1–17 ppm), Hf (0.4–1.0 ppm), and Th (0.05–1.14 ppm). According to the model calculations, the initial melt had a basaltic composition and crystallized at a temperature of ∼1180 °C and pressure up to 4 kbar. The U-Pb zircon age of the massif is 203 ± 1 Ma. The geochemical peculiarities of the massif and its confinement to the northern framing of the eastern segment of the Mongol-Okhotsk fold belt make it possible to presume that its formation was related to either the activity of the Siberian plume, to one of the stages of closure of the Mongol-Okhotsk paleoocean in the rear part of subduction zone, or to the slab break off.  相似文献   

13.
According to the results of U-Pb geochronological investigations, the hornblende subalkali diorite rocks making up the Tok-Algoma Complex in the eastern part of the Selenga-Stanovoi Superterrain of the Central Asian fold belt were formed in the Middle Jurassic rather than in the Middle Archean as was suggested previously. Thus, the age of the regional amphibolite facies metamorphism manifested itself in the Ust??-Gilyui rock sequence of the Stanovoi Complex and that superimposed on granitoids of the Tok-Algoma Complex is Mesozoic rather than Early Precambrian. The geochemical features of the Tok-Algoma granitoids are indicative of the fact that they were formed in the geodynamic setting of the active continental margin or a mature island arc. Hence, it is possible to suggest that the subduction processes along the southern boundary between the Selenga-Stanovoi Superterrain and the Mongolian-Okhotsk ocean basin in the Middle Jurassic resulted in the formation of a magmatic belt of over 500 km in length.  相似文献   

14.
15.
Abstract Archaean greenstone belts are often cut by major shear zones, for example the Cadillac tectonic zone (CTZ) of the southern Abitibi region in north-western Quebec. At McWatters, the CTZ contains slices of metavolcanic units bounded by corridors of highly strained and altered rocks. Mineral assemblages of the metabasites record the metamorphic evolution of the CTZ.
The McWatters metabasalts and metagabbros have similar chemistry but different mineral assemblages consisting of variable amounts of actinolite, hornblende, chlorite, albite, epidote, quartz, carbonates, titanite, biotite, rutile, magnetite, ilmenite and sulphides. The different mineral assemblages, which coexist in a single tectonic slice, can be divided into three types, characterized by (A) presence of hornblende and actinolite, (B) presence of actinolite and epidote, and (C) absence of amphibole and epidote. Partial replacements indicate that these mineral assemblages are not in equilibrium. The hornblende of the least altered and deformed samples of the type A assemblage is a relict of a prograde metamorphic event, contemporaneous with the development of the main schistosity. The prograde conditions are estimated at P = 5 kbar, T = 475° C with low Pf . The more altered and deformed samples of the type C assemblage record a later retrograde metamorphic event. Conditions of the later event are estimated at P = 4 kbar, T = 400° C with higher Pf . Widespread calcite precipitation occurred during a later episode. The diversity of the mineral assemblages results from permeability variations along the high-strain zones of the CTZ.  相似文献   

16.
On the north coast of Iceland, the rift zone in North Iceland is shifted about 120 km to the west where it meets with, and joins, the mid-ocean Kolbeinsey ridge. This shift occurs along the Tjörnes fracture zone, an 80-km-wide zone of high seismicity, which is an oblique (non-perpendicular) transform fault. There are two main seismic lineaments within the Tjörnes fracture zone, one of which continues on land as a 25-km-long WNW-trending strike-slip fault. This fault, referred to as the Husavik fault, meets with, and joins, north-trending normal faults of the Theistareykir fissure swarm in the axial rift zone. The most clear-cut of these junctions occurs in a basaltic pahoehoe lava flow, of Holocene age, where the Husavik fault joins a large normal fault called Gudfinnugja. At this junction, the Husavik fault strikes N55°W, whereas Gudfinnugja strikes N5°E, so that they meet at an angle of 60°. The direction of the spreading vector in North Iceland is about N73°W, which is neither parallel with the strike of the Husavik fault nor perpendicular to the strike of the Gudfinnugja fault. During rifting episodes there is thus a slight opening on the Husavik fault as well as a considerable dextral strike-slip movement along the Gudfinnugja fault. Consequently, in the Holocene lava flow, there are tension fractures, collapse structures and pressure ridges along the Husavik fault, and pressure ridges and dextral pull-apart structures subparallel with the Gudfinnugja fault. The 60° angle between the Husavik strike-slip fault and the Gudfinnugja normal fault is the same as the angle between the Tjörnes fracture zone transform fault and the adjacent axial rift zones of North Iceland and the Kolbeinsey ridge. The junction between the faults of Husavik and Gudfinnugja may thus be viewed as a smaller-scale analogy to the junction between this transform fault and the nearby ridge segments. Using the results of photoelastic and finite-element studies, a model is provided for the tectonic development of these junctions. The model is based on an analogy between two offset cuts (mode I fractures) loaded in tension and segments of the axial rift zones (or parts thereof in the case of the Husavik fault). The results indicate that the Tjörnes fracture zone in general and the Husavik fault in particular, developed along zones of maximum shear stress. Furthermore, the model suggests that, as the ridge-segments propagate towards a zero-underlapping configuration, the angle between them and the associated major strike-slip faults gradually increases. This conclusion is supported by the trends of the main seismic lineaments of the Tjörnes fracture zone.  相似文献   

17.
Tectonics and plate tectonics model for the Variscan belt of Europe   总被引:2,自引:0,他引:2  
A plate tectonics model is presented to explain the tectonometamorphic characteristics of the European Variscides. After the closing of two oceanic domains by two-sided subduction (500-420 Ma) and obduction (420-380 Ma), collision of the European and African continental plates occurred. We propose that the subsequent complex intracontinental deformation (380-290 Ma) is the result of a double subduction of the continental lithosphere accompanied by crust-mantle décollement. This mechanism explains the progressive crustal thickening and migration of the deformation through time from the sutures toward the external parts of the Variscan Belt. Accounting for this model and for the relationships between the European Variscides and the other Paleozoic peri-Atlantic belts (Caledonides, Appalachian, Mauritanides and Morocco), we infer the relative positions of Africa, America and Europe between the Silurian and the Permian.  相似文献   

18.
19.
蓝田和牧护关花岗岩体位于华北克拉通南缘、东秦岭西北端,同时地处大兴安岭-太行山重力梯度带西侧,准确限定其侵位时代对于正确理解华北克拉通岩石圈减薄的时空分布特征及东、西秦岭中生代岩浆作用的时空分布均具有重要意义。蓝田岩体主要由巨斑状二长花岗岩和中细粒二长花岗岩组成,牧护关岩体主要由花岗闪长岩、二长花岗岩和富黑云母花岗岩组成。对其中主体岩性的锆石LA—ICPMSU—Pb定年结果表明,蓝田和牧护关岩体的侵位时代分别为(154±1)Ma和(151±2)Ma,说明它们是燕山期(晚侏罗世-早白垩世)岩浆活动的产物。蓝田-牧护关岩体以西的西秦岭广大地区印支期岩浆岩分布广泛,但迄今为止尚未发现燕山期岩浆活动的证据,相反在蓝田一牧护关岩体以东的华北克拉通南缘和东秦岭地区,燕山期侵入岩十分发育。秦岭造山带中生代花岗岩类侵位时代的系统差异表明,东秦岭和西秦岭自晚侏罗世以后受不同的构造背景控制。一般认为,西秦岭印支期岩浆岩与扬子和华北板块的碰撞拼合有关,而东秦岭燕山期岩浆岩则与华北克拉通岩石圈减薄或太平洋板块向欧亚大陆的俯冲有关。因此,蓝田和牧护关岩体可能代表了滨太平洋构造一岩浆域和华北克拉通岩石圈减薄的西界。  相似文献   

20.
陈凌  危自根  程骋 《地学前缘》2010,17(1):212-228
详细的深部结构信息是深入认识华北克拉通显生宙改造和破坏的重要依据。基于密集流动地震台阵和固定台网记录的远震P波和S波接收函数资料,获得了跨越华北克拉通东、中、西部的3条剖面的岩石圈和上地幔结构图像,揭示了克拉通不同区域深部结构特征的显著差异。与东部普遍减薄的岩石圈(60~100km)相比,中、西部表现出厚、薄岩石圈共存的强烈横向非均匀性,既在稳定的鄂尔多斯盆地之下保留着厚达200km的岩石圈,又在新生代银川—河套和陕西—山西裂陷区存在厚度<100km的薄岩石圈,差异最大的厚、薄岩石圈仅相距约200km。岩石圈厚度在东、中部边界附近的约100km横向范围内显示出20~40km的迅速增加。岩石圈厚度的快速变化与地表地形从东向西的突然改变以及南北重力梯度带的位置大致吻合,并对应于地壳结构、地幔转换带厚度和660km间断面结构的快速变化。这种从地表到上地幔底部深、浅结构的耦合变化特征表明,东西两侧区域在显生宙可能经历了不同的岩石圈构造演化和深部地幔动力学过程。克拉通东部薄的地壳、岩石圈和厚的地幔转换带以及复杂的660km间断面结构可能与中生代以来太平洋板块深俯冲及其相关过程对这一地区岩石圈的改造和破坏有关;而中、西部存在显著减薄的岩石圈这一观测结果,并结合岩石、地球化学资料表明,克拉通岩石圈改造和减薄不仅发生在东部,而且可能影响了包括中、西部在内的更广泛的区域。岩石圈薄于100km的中、西部裂陷区可能与先前存在于岩石圈中的局部构造薄弱带相联系。这些古老岩石圈薄弱带可能经历了后期构造事件的多次改造,并在新生代印度—欧亚陆陆碰撞过程中被进一步弱化、减薄,最终造成地表裂陷。另一方面,中、西部总体较厚的地壳、岩石圈以及正常偏薄的地幔转换带表明,同太平洋深俯冲对东部的作用相比,包括印度—欧亚大陆碰撞在内的多期热-构造事件对该地区的构造演化影响相对较弱,不足以大范围改造和破坏高强度的克拉通岩石圈地幔根,从而造成了该地区现今岩石圈结构的高度横向不均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号