首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam. At present, this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer’s cutting drum position to infer the geological trends of the coal seam. This is a labour intensive task which has negative impacts on the consistency and quality of coal production. As a solution to this problem, this paper presents a sensing method to automatically track geological coal seam features on the longwall face, known as marker bands, using thermal infrared imaging. These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams. Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction. Details on the theory of thermal infrared imaging are given, as well as practical aspects associated with machine-based implementation underground. The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach. The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.  相似文献   

2.
This paper highlights the role of automation technologies for improving the safety, productivity, and environmental sustainability of underground coal mining processes. This is accomplished by reviewing the impact that the introduction of automation technology has made through the longwall shearer automation research program of Longwall Automation Steering Committee (LASC). This result has been achieved through close integration of sensing, processing, and control technologies into the longwall mining process. Key to the success of the automation solution has been the development of new sensing methods to accurately measure the location of longwall equipment and the spatial configuration of coal seam geology. The relevance of system interoperability and open communications standards for facilitating effective automation is also discussed. Importantly, the insights gained through the longwall automation development process are now leading to new technology transfer activity to benefit other underground mining processes.  相似文献   

3.
The case study describes longwall coal seam A in a hard coal mine, where longwall coal face stability loss and periodic roof fall occurrences had been registered. The authors have attempted to explain the situation based on in-situ measurements and observations of the longwall working as well as numerical simulation. The calculations included several parameters, such as powered roof support geometry in the form of the canopy ratio, which is a factor that influences load distribution along the canopy.Numerical simulations were realized based on a rock mass model representing realistic mining and geological conditions at a depth of 600 m below surface for coal seam A. Numerical model assumptions are described, while the obtained results were compared with the in-situ measurements. The conclusions drawn from this work can complement engineering knowledge utilized at the stage of powered roof support construction and selection in order to improve both personnel safety and longwall working stability,and to achieve better extraction.  相似文献   

4.
Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces.  相似文献   

5.
Severe gas disasters in deep mining areas are increasing, and traditional protective coal seam mining is facing significant challenges. This paper proposes an innovative technology using soft rock as the protective seam in the absence of an appropriate coal seam. Based on the geological engineering conditions of the new horizontal first mining area of Luling Coal Mine in Huaibei, China, the impacts of different mining parameters of the soft-rock protective seam on the pressure-relief effect of the protected coal seam were analyzed through numerical simulation. The unit stress of the protected coal seam, which was less than half of the primary rock stress, was used as the mining stress pressure-relief index. The optimized interlayer space was found to be 59 m for the first soft-rock working face, with a 2 m mining thickness and 105 m face length. The physicochemical characteristics of the orebody were analyzed, and a device selection framework for the soft-rock protective seam was developed. Optimal equipment for the working face was selected, including the fully-mechanized hydraulic support and coal cutter. A production technology that combined fully-mechanized and blasting-assisted soft-rock mining was developed. Engineering practices demonstrated that normal circulation operation can be achieved on the working face of the soft-rock protective seam, with an average advancement rate of 1.64 m/d. The maximum residual gas pressure and content, which were measured at the cut hole position of the protected coal seams (Nos. 8 and 9), decreased to 0.35 MPa and 4.87 m3/t, respectively. The results suggested that soft-rock protective seam mining can produce a significant gas-control effect.  相似文献   

6.
Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.  相似文献   

7.
Cooling of coal mines in the Bowen Basin, characterized by steep geothermal gradient, is presently achieved mostly through rental surface bulk air cooling in summer months. This paper argues that future mines will be required to focus their cooling resources more intensively to manage a challenging thermal environment where virgin coal temperatures over 50 °C at a depth of 500 m are expected. Currently, mine cooling systems are employed to maintain the wet bulb temperatures(WBT) to below 27 °C at which point the risks of heat stroke or other heat related issues are manageable. The capacities of these systems are in the range of 6–10 MW refrigeration power. The relationship between high working temperature environment and injury frequency rates is well established. Therefore, provision of appropriate cooling strategies and understanding their optimum performance and suitability are important to Australian coal mines of the future. This paper evaluates the underground temperature profiles of deep, gassy coal mines with propensity for spontaneous combustion and proposes the long term cooling pathways to effectively manage the thermal hazards. Thermodynamic modeling is performed on a longwall face and includes air leakage effects from goaf streams at various locations along the longwall face. The strategy summarizes the application of underground bulk air cooling, chilled water sprays on the shearer and the resulting temperature profiles. Considering the new mining projects planned for the Bowen Basin region, a review of implementable cooling strategies such as mid-gate mobile bulk air coolers(BACs), spot coolers, underground bulk air cooling and the use of chilled water to enhance the positional efficiency of cooling plants,are discussed in this paper. Finally, the comparison of ‘rental' versus ‘ownership' of cooling plants is analysed as part of long-term cooling strategies.  相似文献   

8.
地面群孔瓦斯抽采技术应用研究   总被引:1,自引:0,他引:1  
为保证新集一矿突出煤层13-1煤北中央采区的安全开采,先后开采131103、131105等11-2煤层工作面作为保护层。首先在上述两个工作面共布置了6个地面钻孔,建立了地面群孔瓦斯抽采系统,预抽采动区被保护层13-1煤瓦斯。接下来对地面钻孔抽采瓦斯参数进行了考察,主要包括基于示踪技术考察了131105工作面采动卸压地面钻孔走向及倾向瓦斯抽采半径,统计分析被保护层瓦斯抽采率,同时就地面群孔与井下底板巷穿层钻孔瓦斯抽采两种方法进行了抽采率、工程费用等方面的对比。研究结果表明:新集一矿的地层条件下地面钻孔抽采煤层卸压瓦斯沿煤层倾向和走向的抽采半径分别不小于160m和240m;采动区地面群孔瓦斯抽采率达35%以上;地面钻孔相对比井下底板巷,在抽采瓦斯方面具有技术上可靠、安全、经济等优点。  相似文献   

9.
Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane (CBM) exploration as a significant basic parameter. Due to the calculation error of lost gas and residual gas in the direct method, the efficiency and accuracy of the current methods are not inadequate to the large area multi-point measurement of coal seam gas content. This paper firstly deduces a simplified theoretical dynamic model for calculating lost gas based on gas dynamic diffusion theory. Secondly, the effects of various factors on gas dynamic diffusion from coal particle are experimentally studied. And sampling procedure of representative coal particle is improved. Thirdly, a new estimation method of residual gas content based on excess adsorption and competitive adsorption theory is proposed. The results showed that the maximum error of calculating the losing gas content by using the new simplified model is only 4%. Considering the influence of particle size on gas diffusion law, the particle size of the collected coal sample is below 0.25 mm, which improves the measurement speed and reflects the safety representativeness of the sample. The determination time of gas content reduced from 36 to 3 h/piece. Moreover, the absolute error is 0.15–0.50 m3/t, and the relative error is within 5%. A new engineering method for determining the coal seam gas content is developed according to the above research.  相似文献   

10.
This paper explores the ongoing development and implementation of longwall automation technology to achieve greater levels of underground coal mining performance. The primary driver behind the research and development effort is to increase the safety, productivity and efficiency of longwall mining operations to enhance the underlying mining business. A brief review of major longwall automation challenges is given followed by a review of the insights and benefits associated with the LASC longwall shearer automation solution. Areas of technical challenge in sensing, decision support, autonomy and human interaction are then highlighted, with specific attention given to remote operating centres, proximity detection and systems-level architectures in order to motivate further automation system development.The vision for a fully integrated coal mining ecosystem is discussed with the goal of delivering a highperformance, zero-exposure and environmentally coherent mining operations.  相似文献   

11.
Henan Pingdingshan No.10 mine is prone to both coal and gas outbursts. The E9–10 coal seam is the main coal-producing seam but has poor quality ventilation, thus making it relatively difficult for gas extraction. The F15 coal seam, at its lower section, is not prone to coal and gas outbursts. The average seam separation distance of 150 m is greater than the upper limit for underside protective seam mining. Based on borehole imaging technology for field exploration of coal and rock fracture characteristics and discrete element numerical simulation, we have studied the evolution laws and distribution characteristics of the coal and rock fissure field between these two coal seams. By analysis of the influential effect of group F coal mining on the E9–10 coal seam, we have shown that a number of small fissures also develop in the area some 150 m above the overlying strata. The width and number of the fissures also increase with the extent of mining activity. Most of the fissures develop at a low angle or even parallel to the strata. The results show that the mining of the F15 coal seam has the effect of improving the permeability of the E9–10 coal seam.  相似文献   

12.
Mine or longwall panel layout is a 3D structure with highly non-uniform stress distribution. Recognition of such fact will facilitate underground problem identification/investigation and solving by numerical modeling through proper model construction. Due to its versatility, numerical modeling is the most popular method for ground control design and problem solving. However numerical modeling results require highly experienced professionals to interpret its validity/applicability to actual mining operations due to complicated mining and geological conditions. Underground ground control monitoring is routinely performed to predict roof behavior such as weighting and weighting interval without matching observation of face mining condition while the mining pressures are being monitored, resulting in unrealistic interpretation of the obtained data on mining pressure. The importance of ground control pressure monitoring and simultaneous observation of mining and geological conditions is illustrated by an example of shield leg pressure monitoring and interpretation in an U.S. longwall coal mine: it was found that the roof strata act like a plate, not an individual block of the size of a shield dimension, as commonly assumed by all researchers and shield capacity is not a fixed property for a longwall panel or a mine or a coal seam. A new mechanism on the interaction between shield's hydraulic leg pressure and roof strata for shield loading is proposed.  相似文献   

13.
As mining depth becomes deeper and deeper, the possibility of undermining overburden aquifers is increasing. It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers. In order to study this problem, piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine. Large amounts of pre-mining, during mining and post-mining monitoring data were collected. Based on the data, the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied. The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m, the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall. The height of the fractured zone is 72.7–85.3 m in the geological and mining conditions. The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results. Therefore, it is not always safe to use them for analyses while mining under water bodies.  相似文献   

14.
In order to enhance coal recovery ratio of open pit coal mines, a new extraction method called zonal mining system for residual coal around the end-walls is presented. The mining system can improve economic benefits by exploiting haulage and ventilation roadways from the exposed position of coal seams by utilizing the existing transportation systems. Moreover, the main mining parameters have also been discussed. The outcome shows that the load on coal seam roof is about 0.307 MPa and the drop step of the coal seam roof about 20.3 m when the thickness of cover and average volume weight are about 120 m and 0.023 MN/m3 respectively. With the increase of mining height and width, the coal recovery ratio can be improved. However, when recovery ratio is more than 0.85, the average stress on the coal pillar will increase tempestuously, so the recovery ratio should also be controlled to make the coal seam roof safe. Based on the numerical simulation results, it is concluded that the ratio of coal pillar width to height should be more than 1.0 to make sure the coal pillars are steady, and there are only minor displacements on the end-walls.  相似文献   

15.
Mining induced pressures are strong and overburden failure areas are large in top coal caving longwall mining, which constrains high production and safety mining. By employing the combination of the full view borehole photography technique and the seismic CT scanner technique, the deformation and failure of overlying strata of fully mechanized caving face in shallow coal seam were studied and the failure development of overburden was determined. Results show that the full view borehole photography can reveal the characteristics of strata, and the seismic CT scanner can reflect the characteristics of strata between the boreholes. The combined measurement technique can effectively determine the height of fractured and caved zones. The top end of the caved zone in Yangwangou coal mine employing the top coal caving longwall mining was at the depth of 171 m and fractured zone was at the depth of 106-110 m. The results provide a theoretic foundation for controlling the overburden strata in the shallow buried top coal caving panel.  相似文献   

16.
The methane concentration of the return current will always be enhanced to a certain degree when hydraulic fracturing with bedding drilling is implemented to a gassy coal seam in an underground coal mine. The methane in coal seam is driven out by hydraulic fracturing. Thus, the phenomenon is named as methane driven effect of hydraulic fracturing. After deep-hole hydraulic fracturing at the tunneling face of the gassy coal seam, the coal methane content exhibits a ‘‘low-high-low" distribution along excavation direction in the following advancing process, verifying the existence of methane driven caused by hydraulic fracturing in methane-bearing coal seam. Hydraulic fracturing causes the change of pore-water and methane pressure in surrounding coal. The uneven distribution of the pore pressure forms a pore pressure gradient. The free methane migrates from the position of high pore(methane) pressure to the position of low pore(methane) pressure. The methane pressure gradient is the fundamental driving force for methane-driven coal seam hydraulic fracturing. The uneven hydraulic crack propagation and the effect of time(as some processes need time to complete and are not completed instantaneously) will result in uneven methane driven. Therefore, an even hydraulic fracturing technique should be used to avoid the negative effects of methane driven; on the other hand, by taking fully advantage of methane driven, two technologies are presented.  相似文献   

17.
This paper describes a field and numerical investigation of the overburden strata response to underground longwall mining, focusing on overburden strata movements and stress concentrations. Subsidence related high stress concentrations are believed to have caused damage to river beds in the Illawarra region, Australia. In the field study, extensometers, stressmeters and piezometers were installed in the overburden strata of a longwall panel at West Cliff Colliery. During longwall mining, a total of 1000 mm tensile deformation was recorded in the overburden strata and as a result bed separation and gaps were formed. Bed separation was observed to start in the roof of the mining seam and gradually propagate toward the surface as the longwall face advanced. A substantial increase in the near-surface horizontal stresses was recorded before the longwall face reached the monitored locations. The stresses continued to increase as mining advanced and they reached a peak at about 200 m behind the longwall face. A numerical modelling study identified that the angle of breakage (i.e., the angle of the boundary of caved zone) behind the longwall face and over the goaf was 22–25° from vertical direction. This is consistent with the monitoring results showing the high gradient of stresses and strains on the surface 150–320 m behind the mining face.  相似文献   

18.
To improve the gas extraction efficiency of single seam with high gas and low air permeability, we developed the “fracturing-sealing” integration technology, and carried out the engineering experiment in the 3305 Tunliu mine. In the experiment, coal seams can achieve the aim of antireflection effect through the following process: First, project main cracks with the high energy pulse jet. Second, break the coal body by delaying the propellant blasting. Next, destroy the dense structure of the hard coal body, and form loose slit rings around the holes. Finally, seal the boreholes with the “strong–weak–strong” pressurized sealing technology. The results are as follows: The average concentration of gas extraction increases from 8.3% to 39.5%. The average discharge of gas extraction increases from 0.02 to 0.10 m3/min. The tunneling speeds up from 49.5 to 130 m/month. And the permeability of coal seams improves nearly tenfold. Under the same conditions, the technology is much more efficient in depressurization and antireflection than common methods. In other words, it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability.  相似文献   

19.
为提高煤层瓦斯量的测定精度,解决煤样暴露时间延长、漏失瓦斯量推算误差增大的问题,采用自主研发的吸附解吸试验系统,对一缘煤矿15号煤层煤样的瓦斯解吸规律进行试验研究,以及运用巴雷尔公式和瓦斯解吸理论方程的近似公式分别对010,010,030,030,060,060,0120 min等时段内的实测数据进行了拟合效果对比分析,并以上述2个公式为模型新建了2个漏失瓦斯量的推算公式,将2个新建公式在不同暴露时间、拟合时段情况下的推算值与实测的模拟漏失瓦斯量进行了误差对比.结果表明,在暴露时间和拟合时段都较短的情况下,适合采用巴雷尔公式推算漏失瓦斯量;在暴露时间与拟合时段均较长的情况下,采用解吸理论方程的近似公式推算漏失瓦斯量误差较小;在暴露时间为60 min,拟合时段为60120 min等时段内的实测数据进行了拟合效果对比分析,并以上述2个公式为模型新建了2个漏失瓦斯量的推算公式,将2个新建公式在不同暴露时间、拟合时段情况下的推算值与实测的模拟漏失瓦斯量进行了误差对比.结果表明,在暴露时间和拟合时段都较短的情况下,适合采用巴雷尔公式推算漏失瓦斯量;在暴露时间与拟合时段均较长的情况下,采用解吸理论方程的近似公式推算漏失瓦斯量误差较小;在暴露时间为60 min,拟合时段为60120 min时,推算误差达到最小,为3.09%.  相似文献   

20.
Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitations. We analyzed an inertial navigation system intended to guide the movement a shearer and designed a self-positioning device for the shearer. Simulation tests were also performed on the system. We analyzed the errors observed in these tests to show that the main reason for the low precision of the self-positioning system is accumulated error in the inertial sensor. A Kalman filtering algorithm used in combination with the shearer motion model effectively reduces the measurement errors of the self-positioning system by compensating for gyroscopic drift. Finally, we built an error compensation model to reduce accumulated errors using continuous correction to provide self-positioning of the shearer within a certain range of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号