首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eu2+/Sm3+co-doped dual-emitting Sr4La(PO4)3O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu2+/Sm3+co-doped Sr4La(PO4)3O phosphors were researched and analyzed in detail.The blue emission of Eu2+and the red emission of Sm3+can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr4La(PO4)3O:Eu2+/Sm^(3+)phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr4La(PO4)3O:Eu2+/Sm3+phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu2+and Sm3+ions.  相似文献   

2.
Nd~(3+)/Yb~(3+) co-doped fluorobromide glass samples were prepared by melt quenching.The mid-infrared(MIR) luminescence of the Nd~(3+)/Yb~(3+) co-doped fluorobromide glass was investigated by Br-doping reduces the phonon state density of the matrix.The 3.9 μm MIR luminescence of the samples excited at 793 and 980 nm pump excitation was investigated in detail.There is an effective mutual energy transfer process between Nd~(3+) and Yb~(3+).It is proved under 793 nm excitation that the luminescence of Nd~(3+)at 3.9 μm is reduced by effective energy transfer from,Nd~(3+):~2 H_(11/2)→Yb~(3+):~2 F_(5/2),At the same time,it is proved that the effective energy transfer from Yb~(3+):~2 F_(5/2)→Nd~(3+):2 H_(11/2) under the excitation of 980 nm enhances the luminescence of Nd~(3+) at 3.9 μm.In addition,it is found that the samples still have good infrared(IR) luminescent properties when the temperature changes.The emission cross-sectional area and the absorption cross-sectional area are σ_(em)(3.87 × 10~(-20) cm~2) and σ_(abs)(4.25×10~(-20) cm~2).The fluorescence decay characteristics of the sample at 3.9 μm at the ~2 H_(11/2) level were investigated and the fluorescence lifetime was calculated.The gain performance of the sample was calculated and analyzed,which can reach 4.25 × 10~(-20) cm~2.Those results prove that Nd~(3+)/Yb~(3+)co-doped fluorobromide glass is the potential mid-infrared laser gain material.  相似文献   

3.
The spectroscopic properties of a series of Dy~(3+) single-doped and Dy~(3+)/Nd~(3+),Dy~(3+)/Tb~(3+),and Dy~(3+)/Tm~(3+)co-doped YAlO_3(yttrium aluminum perovskite,YAP) phosphors were investigated and compared through the measurements of optical absorption,emission spectra,and fluorescence decay curves.For the Dy~(3+) ion single-doped samples,the intensity of each absorption band increases with an increment in Dy~(3+) ion doping concentration,and the identified strong absorption peak at 447 nm indicates that Dy~(3+):YAP phosphors are suitable to be pumped by a blue laser diode(LD).For all co-doped samples,absorption peaks of Dy~(3+) ion along with some of the absorption bands of Nd~(3+),Tb~(3+),and Tm~(3+) ions are observed.Under 351 and 447 nm excitation,a prominent emission peak at 572 nm was obtained in all the samples,corresponding to Dy~(3+):~4 F_(9/2)→~6 H_(13/2) transition.Here,2 at% Dy~(3+):YAP phosphor exhibits the highest yellow emission intensity under 447 nm pumping.Among the three kinds of Dy~(3+) co-doped phosphors,Dy~(3+)/Tb~(3+):YAP phosphor possesses the dominant yellow emission.The fluorescence decay curves show exponential behaviour and are fitted well.The Commission International de L'Eclairage(CIE)chromaticity coordinates were calculated following the respective emission spectra,and it is found that all the coordinates locate in the yellow region.The energy transfer(ET) processes were investigated and the concentration quenching mechanism was discussed.The obtained results suggest that Dy~(3+)-activated YAP phosphors are good candidates for yellow LED applications.  相似文献   

4.
An effective method of improving the luminescent properties of rare earth ions in fluoride glasses were reported.The Pr~(3+)/Ho~(3+)co-doped fluorochlorozirconate luminescent glasses were prepared,and the effects of chloride on the spectral properties and structure of the glasses were studied.According to the results,the glass stability is improved,and the luminescence intensity in the visible range is significantly enhanced with the introduction of chloride.By introducing 7.5 mol% BaCl_2,the luminescence intensity reaches the maximum and increases by three times,The mechanism of luminescence enhancement is explained by analyzing the correlation between the composition and the structure.The chloride ions disperse outside the glass network before the introduction of 7.5 mol% BaCl_2 and increased dispersity of Pr~(3+)and Ho~(3+)ions in the fluorozirconate glasses.  相似文献   

5.
Single-phase Y2BaAl4SiO12:Tb3+,Eu3+phosphors with adjustable luminescence were successfully prepared by high-temperature solid-state reaction method.The structural,luminescent properties and ene rgy transfer(ET) process of Y2BaAl4SiO12:Tb^(3+),Eu3+phosphors were syste matically analyzed with the help of X-ray diffraction(XRD),scanning electron microscopy(SEM),excitation spectra,emission spectra and photoluminescence decay curves.Tunable luminescence ranging from green through yellow and definitively to red can be achieved by elevating amounts of Eu3+ions in Tb3+,Eu3+co-doped samples.Besides,the ET mechanism and efficiency were also analyzed and the maximum ET efficiency is 67%.All the results show that Y2BaAl4SiO12:Tb3+,Eu3+phosphors can be used in solid-state lighting.  相似文献   

6.
The glass-forming regions of tellurium-gadolinium-tungsten ternary system prepared at 1000℃for 60 min were firstly determined.To improve density,the full replacement of lutetium for gadolinium to form Tb3+-activated tellurium-lutetium-tungsten glasses with the composition of 64 TeO2-20 WO3-(16-y)Lu2O3-yTb2O3were designed for scintillation application.The concentration-dependent optical properties of Tb3+-activated tellurium-lutetium-tungsten glasses were fully investigated by transmittance,excitation and emission spectra,together with the luminescence decay curves.The energy transfer mechanism was discussed according to Huang’s rule.The optimized 4 mol%Tb2O3activated tellurium-lutetium-tungsten glasses with the density of 6.49 g/cm3and the lifetime of 0.551 ms are developing to be suitable for the potential detection of slow events in the future work.  相似文献   

7.
The long persistent phosphors of Zr_(0.97)P_2 O_7:0.018 Tb~(3+),0.012 Nd3+with Nd~(3+)as sensitized ions and Tb~(3+)as emission centers were synthesized using high temperature solid state reaction.The crystal structure and defects,excitation and emission spectra,decay curves and thermoluminescence(TL) curves of the phosphors were investigated.The synthesized Zr_(0.97)P_2 O_7:0.018 Tb3+,0.012 Nd3+is essentially in line with the standard card PDF#49-1079.The emission band with main peak at 548 nm exhibits the characteristic transitions of ~5 D_3-~7 F_j(j=5,4) and ~5 D3-~7 F_j(j=6,5,4,3) of Tb~(3+).The analysis of excitation and emission spectra shows that there exists the overlap between the emission peaks of Nd~(3+)at 466 and 485 nm and the excitation of Tb3+at 443 and 485 nm,and the energy transfer from Nd3+to Tb3+plays an important role in the improvement of luminescence properties.The decay curves shows that Zr_(0.97)P_2 O_7:0.018 Tb3+,0.012 Nd3+has longer afterglow time than ZrP_2 O_7 and Zr_(0.982)P_2 O_7:0.018 Tb3+.Additionally,the TL curves indicate that the trap depth at 0.72 eV in Zr_(0.97)P_2 O_7:0.018 Tb~(3+),0.012 Nd3+is to the benefit of the afterglow time.The possible luminescence mechanism of ZrP_2 O_7:Tb~(3+),Nd3+is proposed on the basis of the XPS spectra,EPR spectra,excitation and emission spectra,decay curves,TL curves and the analysis of defect equations.  相似文献   

8.
Recently,borate compounds have received much attention in the field of rare earth doped phosphors due to their excellent luminescent performance.In this work,to explore the potential in LED and FED applications,the CsBaB_3 O_6:Eu~(3+) phosphor was investigated in detail by using Rietveld refinement,DFT calculations,photoluminescent and cathodoluminescent spectra.As a result,CsBaB_3 O_6 has a planar stacked three-dimensional layered structure.Under the excitation of 395 nm n-UV light and electron beam,CsBaB_3 O_6:Eu~(3+) phosphor exhibits a typical red emission of Eu~(3+).A good thermal stability and good resistance to saturation and degradation were observed in the CsBaB_3 O_6:Eu~(3+) phosphor.The related photoluminescent and cathodoluminescent mechanisms were studied.The results indicate that CsBaB_3 O_6:Eu~(3+) phosphor has potential in multifunctional applications.  相似文献   

9.
The transparent oxyfluoride glass ceramics containing Ba Gd F5 nanocrystals were prepared with a composition of 42 Si O2-12Na2O-16Al2O3-24 Ba F2-4Gd2O3-2Ce F3(mol.%) by thermal treatment technology. The typical DSC curve, X-ray diffraction(XRD) and transmission electron microscopy(TEM) patterns were measured. The transmission spectra and luminescent properties were investigated. The decay times of the Gd3+ ions at 312 nm excited with 275 nm for the Ce3+ ions doped glass and glass ceramics specimens and the energy transfer process between Gd3+ ions and Ce3+ ions were also studied. The XRD analysis and the TEM images confirmed the generation of the spherical Ba Gd F5 nanocrystals. Compared with the PG specimen, the intensity of the luminescence spectra of the glass ceramics specimens was apparently enhanced with the heat treatment temperature increasing, and a blue shift in the excitation spectra and the emission spectra of glass ceramics specimens was obviously observed. In the fluorescence decay curves of the Gd3+ ions, it could be obviously observed that the fluorescent intensity decays in the Ce3+ ions doped glass and glass ceramics specimens decreased rapidly with the increase of the heat treatment temperature. In addition, the energy transfer efficiency from Gd3+ions to Ce3+ ions was also calculated.  相似文献   

10.
研究了Eu2+、Dy3+共激活的SrAl2O4体系的发光性能和能量传输。结果表明,Dy3+、Eu2+共存时,Eu2+的发光强度远远大于无Dy3+时的发光强度,证明Dy3+对Eu2+的发光有敏化作用。Dy→Eu2+能量传输的方式为籍助于载流子的能量输运。  相似文献   

11.
Tri-doped Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors were prepared by a high-temperature solid state method.Under UV light excitation,Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+)samples exhibit a broad band ranging from 320 to 500 nm.At 77 K,the emission spectra of Ca_9 LiY_(2/3)(PO_4)7:Ce~(3+)samples present two obvious emission peaks,indicating that Ce~(3+)ions occupy two different kinds of lattice sites(Ca(1/2) and Ca(3)),As a good sensitizer for Tb~(3+),Ce~(3+)ions in Ca_9 LiY_(2/3)(PO_4)_7 lattice can effectively transfer part of energy to Tb~(3+),and the energy trans fer mechanism is determined to be dipole-dipole interaction.Consequently,the emitting color for Ce~(3+) and Tb~(3+) co-doped Ca_9 LiY_(2/3)(PO_4)_7 samples can be tuned from bluish violet to green.In order to further enlarge the emission gamut,Mn~(2+)ions as red emission components were added,forming tri-doped single-phase Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors.The Ca_9 LiY_(2/3)(PO_4)_7:Ce~(3+),Tb~(3+),Mn~(2+)phosphors exhibit tunable emission properties through controlling the relative doping concentration of Ce~(3+),Tb~(3+)and Mn~(2+).Especially,Ca_9 LiY_(2/3)(PO_4)_7:0.09 Ce~(3+),0.12 Tb~(3+),0.30 Mn~(2+)can emit warm white light.The sample shows good thermal stability.At 150℃,the emission intensity for Ce~(3+)(360 nm),Tb~(3+)(545 nm) and Mn~(2+)(655 nm) decreases to 63%,69%,and 72% of its initial intensity,respectively.Moreover,the sample obtains good stability after 10 cycles between room temperature and150℃.  相似文献   

12.
A novel Tm~(3+)/Tb~(3+)/Sm~(3+)tri-doped Na_5 Y_9 F_(32) single crystal was synthesized by a modified Bridgman method for the propose of white light emitting diodes.The fluorescence spectra of various Sm~(3+)ion concentrations and fixed 0.4 mol% Tm~(3+) and 0.5 mol% Tb~(3+) were measured and studied systematically excited by near-ultraviolet light of 355 nm.The Sm3+ion concentration takes apparent effect on the relative intensity of peaks in the visible region and the color coordinate combining from these emission bands.A near pure white light emission with color coordinates(0.3295,0.3057) and color temperature(5657 K) can be obtained when the concentrations of Tm~(3+),Tb~(3+) and Sm~(3+) ions are 0.4 mol%,0.5 mol%and 0.8 mol%,respectively.Furthermore,the practical down-conversion internal quantum yield was measured by integrating spheres at about 14.39%.The tri-doped Na_5 Y_9 F_(32) single crystal shows a high thermal stability inferring from the temperature dependent emission in which the integrated emission intensities are reduced only by~3% with the increase of temperature from 280 to 450 K.The present results demonstrate that the Tm~(3+)/Tb~(3+)/Sm~(3+)tri-doped Na_5 Y_9 F_(32) single crystal may provide a promising candidate for white light-emitting diodes,luminescent materials and fluorescent display devices.  相似文献   

13.
In this work we repo rt on structural and spect roscopic properties of Yb3+doped and Pr~(3+)/Yb~(3+)co-doped TeO_2-Bi_2 O_3-ZnO-Li_2 O-Nb_2 O_5(TBZLN) tellurite glasses.Bending and stretching modes of TeO_2 and Te-OH bond(strong and weak) were analysed from the deconvolution of observed Raman and FT-IR spectra.Based on the absorption measurements,the energy bands of Yb~(3+)and Pr~(3+)ions are assigned.The spectroscopic properties for the radiative transitions of Yb~(3+)and Pr~(3+)ions were reported using McCumber and Judd-Ofelt theories.Visible emission bands originating from ~3 P_1 and ~3 P_0 to lower lying levels of Pr~(3+)were registered under 447 nm excitation.The emission band around 1334 nm assigned to the Pr~3:~1 G_4→~3 H_5 was observed when excited at 980 nm.The stimulated emission cross-section(σ_(emi)(λ))and effective linewidth(Δλ_(eff)) for the ~3 P_1→~3 H_6,~3 P_1→~3 H_5,~3 P_0→~3 H_6,~3 P_0→~3 F_2,~3 P_1→~3 F_3,~3 P_1→~3 F_4,~3 P_0→~3 F_4 and ~1 G_4→~3 H_5 transitions of Pr~(3+)are reported.Upconversion luminescence in Pr~(3+)/Yb~(3+)codoped glass upon 980 nm excitation was measured.Possible resonant transfer processes between Yb~(3+)and Pr~(3+)ions are presented and discussed.The chromaticity co-ordinates were also evaluated from the visible emission spectra showing that Pr~(3+)/Yb~(3+)co-doped glass may be suitable for the development of yellow-orange(λ_(exc)=447 nm) and near white light(λ_(exc)=980 nm) emitting devices in photonics.  相似文献   

14.
Self-calibrating luminescent thermometry employing luminescence within the optical transparency windows provides a promising prospect for temperature measurement in the biological fields.In this work,a new Nd~(3+)/Yb~(3+)-codoped metal-organic framework Nd_(0.95)Yb_(0.05)BPTC showing threedimensional anionic network,obtained by reacting ligand [1,1'-biphenyl]-3,3',5,5'-tetracarboxylic acid(H_4BPTC) with Nd~(3+) and Yb~(3+) ions under solvothermal conditions,is reported.Upon 808 nm photoexcitation,Nd_(0.95)Yb_(0.05)BPTC simultaneously emits the characteristic near-infrared luminescence of Nd~(3+) and Yb~(3+) ions based on the efficient energy transfer from Nd~(3+) to Yb~(3+) ions.In addition,the emission intensity ratio of Yb~(3+) and Nd~(3+) shows good exponential-like response to temperature in the physiological range of 293-323 K.The feature properties of Nd_(0.95)Yb_(0.05)BPTC include near-infrared absorption and emission,favorable temperature sensitivity and accurate temperature uncertainty,as well as good chemical stability,making such system useful in biomedical applications.  相似文献   

15.
La2Mg1-x/2Zr1-x/2O6:xBi3+(x=0.01-0.035,abbreviated as LMZ:Bi3+) and La2-yMg0.99Zr0.99O6:0.02Bi3+,yEu3+(y=0.1-0.11,abbreviated as LMZ:Bi3+,Eu3+) double-perovskite phosphors were prepared through high-temperature solid-phase method.The emission spectrum of LMZ:xBi3+(x=0.01-0.035)phosphors excited at 353 nm is asymmetric in the range be...  相似文献   

16.
A novel red-emitting phosphor tantalate Ca_2 YTaO_6:Eu~(3+)was synthesized by a solid-state reaction.The purity and surface morphology of the phosphors were characterized.The Ca_2 YTaO_6:Eu~(3+)phosphors show a sharp emission peak at 612 nm under near-ultraviolet(n-UV) at 395 nm because of the ~5 D_0→~7 F_2 transition of Eu3+.The optimal Eu3+doping concentration in Ca2 YTaO_6 is 40 mol% and the critical energy-transfer distance of Eu3+ions was calculated to be 0.9 nm.The emission spectra of Ca_2 YTaO_6:Eu3+from 300 to 480 K were investigated.The thermal-quenching temperature(T_(0.5)) of Ca_2 YTaO_6:Eu~(3+)is above 480 K.The color purity of Ca_2 YTaO_6:40 mol%Eu3+is as high as 99.8%.The luminescence lifetime of Ca_2 YTaO_6:40 mol%Eu~(3+)was also discussed.The high color purity and high thermal stability of Eu~(3+)-doped Ca2 YTaO6 phosphors contribute to its application value in white lightemitting diodes(w-LEDs).  相似文献   

17.
A series of fluorotellurite glasses based on(81–x)Te O2-(10+x)KF-9La2O3(TKL), where x=0 mol.%, 5 mol.%, 10 mol.%, 15 mol.%, doped with 2000 ppm Tm2O3, were prepared by the conventional melt quenching method.The influence of KF content on the thermal stability and optical spectroscopic properties of the Tm3+ doped fluorotellurite glasses were investigated by differential scanning calorimetry(DSC), X-ray diffraction(XRD), density measurement, Fourier transform infrared spectroscopy(FTIR), UV-VIS-NIR optical spectroscopy and fluorescence spectroscopy.Judd-Ofelt intensity parameters of Tm3+ in as-prepared glasses were determined and used to calculate the spontaneous emission probabilities and the radiative lifetime for the 4f-4f transitions of the Tm3+ ions.Stimulated emission cross sections in the 1470 nm region(σse) were evaluated by Füchtbauer-Ladenburg formula.The results showed that KF substitution of Te O2 was beneficial to improving the thermal stability, decreasing glass density and reducing the content of OH related groups for the investigated fluorotellurite glasses.The glass with composition of 66 Te O2-25KF-9La2O3(named TKL25) had the longest radiative lifetime of the 3H4(361 μs) and the largest FWHM×σse value(420.07×10–28 cm3), which made it a promising material for S-band fiber amplifiers.  相似文献   

18.
The powder samples of Ca9Sc(PO4)7:xDy^(3+)white emitting phosphors were prepared via a solid state reaction technique.The Ca9Sc(PO4)7:Dy3+samples were researched by using the GSAS Rietveld refinement and X-ray diffraction(XRD) methods,and SEM images and elemental maps were recorded.Under 350 nm excitatio n,the emission spectra of Ca9Sc(PO4)7:xDy3+samples have two obvious peaks and one weak peak at 484,572 and660 nm,corresponding to the characteristic electron transitions of(4F9/26H15/2,blue),(4F9/26H13/2,yellow) and(4F9/2→ 6 H11/2,red),respectively.The concentration quenching effect,decay lifetime and thermal quenching of the as-synthesized Ca9Sc(PO4)7:Dy3+samples were researched systematically.The Ca9Sc(PO4)7:0.02 Dy3+phosphor possesses a good thermal stability,of which the emission intensity at 423 K can maintain 79% of the initial value(273 K).In addition,through the study of the chro maticity coordinates of the Ca9Sc(PO4)7:0.02 Dy3+phosphor,it is found that it is located in the white region,and the Commission Internationalede L’Eclairage(CIE) chromaticity coordinates are(0.339,0.389),The above results show that Ca9Sc(PO4)7:xDy3+phosphors can be excellent candidate material for applications in NUV-excited white LEDs.  相似文献   

19.
Transparent,luminescent and functional nanocomposites demonstrate interesting optical and mechanical properties suitable for many optoelectronic applications.Transparent polymethyl methacrylate(PMMA) polymer nanocomposites modified with thenoyl-trifluoroacetonate(TAA) were fabricated by in situ polymerization and used as hosts for homogenous dispersion of 3 mol.% Eu3+:Ca10(PO4) 6(OH) 2(Eu3+:HA) hydroxyapatite ~20 nm large nanocrystals.The emission,excitation and transmission spectra as well as the fluorescence decay rates of bare Eu3+:HA nanocrystallites,Eu3+:HA embedded in the PMMA and and Eu:HA embedded in the PMMA/TTA nanocomposites were studied.The improvement of transparency was demonstrated with the addition of TTA as well as europium doped hy-droxyapatites in comparison to pure PMMA matrix.The Judd-Ofelt analysis of f-f transitions of Eu3+:HA nanocrystallites,the PMMA/Eu3+:HA and the PMMA+TTA/Eu3+:HA was performed to investigate the optical behavior of the polymeric composites.  相似文献   

20.
Novel trivalent europium(Eu~(3+))-activated La_7 Ta_3 W_4 O_(30):xEu~(3+)(x=0.5 mol%-40 mol%) red-emitting phosphors were synthesized by means of a high-temperature solid-state reaction.The structure,morphology,photoluminescence,thermal-stability properties,lifetime,and color-rendering of the prepared phosphors were investigated in detail.The La_7 Ta_3 W_4 O_(30):Eu~(3+) phosphors show five emission peaks under near-ultraviolet(n-UV) at 397 nm,and these peaks are ascribed to the transitions of ~5 D_0-~7 F_j(j=0,1,2,3 and 4) by Eu~(3+) ions.The optimal doping concentration of Eu~(3+) is 20 mol%,and the critical distance of the energy transfer between the Eu3+ions was calculated to be 1.768 nm.The quenching temperature(T_(0.5)) of La_7 Ta_3 W_4 O_(30):20 mol%Eu~(3+) is about 440 K.The quantum yield(QY) was measured to be 85.85%.The fabricated white-light-emitting diodes(w-LEDs) possess high color-rendering index(R_a) of 90,and high correlated color temperature(CCT) of 5810 K,respectively.The Commission Internationale de L'Eclairage(CIE) coordinates are(0.311,0.322).Therefore,the prepared phosphor has a promising application for w-LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号