首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of oil spilled in coastal zones depends in large part on the interactions with environmental factors existing within a short time of the spill event. In addition to weathering which produces changes in the chemistry of the hydrocarbon stock, physical interactions between oil and suspended particulate matter (SPM), both organic and inorganic, play a role in determining the dispersal and sedimentation rates of the spill. This in turn affects the degradation rate of the oil. This paper provides a comprehensive literature review of the role of oil–particle interactions in removal of petroleum hydrocarbons from the sea surface and provides estimates of the degree to which SPM may augment the deposition of oil. Both field and laboratory observations have shown widely varying rates of oil removal due to particulate interactions. The discussion covers the interaction between oil weathering, injection, sinking, adsorption, microbial processes, flocculation and ingestion by zooplankton, which all contribute to packaging oil and SPM into settling aggregates.  相似文献   

2.
The physical and chemical properties of crude oils differ greatly, and these properties change significantly once oil is spilled into the marine environment as a result of a number of weathering processes. Quantitative information on the weathering of spilled crude is a fundamental requirement for a fuller understanding of the fate and behaviour of oil in the environment. Additionally, such data are also essential for estimating windows-of-opportunities, where specific response methods, technologies, equipment or products are most effective in clean-up operations. In this study, the effects of a relatively low toxicity compound, biodiesel (rape seed oil methyl ester) on the rate of removal and weathering characteristics of crude oil within artificial sand columns are thoroughly investigated using GC/MS techniques. In the absence of the biodiesel, the crude oil exhibits low mobility and a slow rate of microbial degradation within the sediment and as a result, a high degree of persistance. Brent crude oil was subject to a progressive loss of the low molecular weight n-alkanes with respect to time through evaporation and a preferential migration of these fractions through the sediment to depth. The addition of the biodiesel led to greater recovery of oil from the sediment if applied to relatively unweathered crude oil. This was as the result of the crude oil dissolving within the more mobile biodiesel. The negligible concentration of the n-C10 to n-C21 fraction in surface sediment samples suggests a greater solubility of these fractions within the biodiesel and that their subsequent adsorption onto subsurface sediment particles was responsible for their absence from water flushed through the sands. These results suggest that biodiesel may have an active role in the beach clean-up of spilt crude oil.  相似文献   

3.
This paper discusses processes and factors for estimating time period windows of in situ burning of spilled oil at sea. Time-periods of in situ burning of Alaska North Slope (ANS) crude oil are estimated using available data. Three crucial steps are identified. The First Step is to determine the time it takes for the evaporative loss to reach the known or established limitation for evaporation and compare this time-period with estimated time of ignition at the ambient wind and sea temperatures. The Second Step is to determine the water up-take of the spilled oil and compare it with the known or established limitation for water-in-oil content. The Third Step is to determine the necessary heat load from the igniter to bring the surface temperature of the spilled oil to its flash point temperature so that it will burn at the estimated time period for ignition of the slick.  相似文献   

4.
Laboratory and field data suggest that the movement of spilled oil at sea is in general a three-dimensional phenomenon in physical space, whereas trajectories of undrogued surface drifters are more susceptible to two-dimensional analysis. These conclusions are consistent with the intermittent failure of two-dimensional surface models to simulate the trajectories of spilled oil, although such models may be more successful with data from surface drifters. A physical explanation is presented, and a model that incorporates the key portions of the governing processes is described and tested against data from experimental oil spills at sea. Observations suggest that emulsified surface oil will drift down wind at speeds in excess of 3% of the windspeed. When surface turbulence drives oil subsurface for a significant fraction of time, however, net transport speeds are considerably less and significantly to the right of the wind in the northern hemisphere.  相似文献   

5.
Analysis of oil spills data confirms that accidental oil spills are natural phenomenon and that there is a relationship between accidental oil spills and variables like vessel size, vessel type, time and region of spill. The volume of oil spilled bears relationship with the volume of petroleum imports and domestic movement of petroleum and proportion of large oil spills. Finally, navigational risk increases with increase in marine traffic and is also determined by variables like hydrographic and meteorological conditions, water configuration, maneuvering space, obstructions and nuisance vessels. The Oil Pollution Act, 1990 (OPA 90) was passed by the US Congress in the aftermath of 11 million gallon spill of crude oil in Prince William Sound, Alaska. The objective of OPA 90 was to minimize marine casualties and oil spills by addressing preventive, protective, deterrent and performance aspects of accidental oil spills. The arm of various regulations like double-hull tankers and vessel response plans extended to both US flagged and foreign-flagged tank vessels. The cost–benefit analysis of major regulations shows that the estimated costs exceed estimated benefits. We observe from USCG data on oil spills by size, by vessel type, Coast guard district and type of petroleum product that there have been significant reductions in the number and the quantity of oil spills. Our regression results show that the quantity of oil spilled increases with increase in oil imports but increases at a decreasing rate. The quantity of oil spilled decreases with increases in the domestic oil movements. Furthermore, percent of oil spills larger than 10,000 gallons also increases the potential quantity of oil spilled. OPA 90 has been a deterrent to accidental oil spills but the finding is not conclusive.  相似文献   

6.
An oil spill accident happened in Tokyo Bay on 2 July 1997. About 1500 m3 of crude oil was released on the sea surface from the Japanese tanker Diamond Grace. An oil spill model is applied to simulate the fate of spilled oil. The Lagrangian discrete-parcel method is used in the model. The model considers current advection, horizontal diffusion, mechanical spreading, evaporation, dissolution and entrainment in simulating the oil slick transformation. It can calculate the time evolution of the partition of spilled oil on the water surface, in the water column and the sedimentation on the bottom. A continuous source at constant rate is set up as a tanker off the coast of Yokohama. The grid size is 1 km in the calculation domain. The residual flow simulated by a 3-D hydraulic model and observed wind data are used for advection. The simulated distribution of oil spreading agrees well with observations from satellite remote-sensing.  相似文献   

7.
This paper is a review of the major findings from laboratory studies and field trials conducted in Norway in recent years on the emulsification of oils spilled at sea. Controlled bench-scale and meso-scale basin experiments using a wide spectrum of oils have revealed that both the physico-chemical properties of the oils and the release conditions are fundamental determinants of the rate of emulsion formation, for the rheological properties of the emulsion formed and for the rate of natural dispersion at sea.During the last decade, several series of full-scale field trials with experimental releases of various crude oils have been undertaken in the North Sea and the Norwegian Sea. These have involved both sea surface releases, underwater pipeline leak simulations (release of oil under low pressure and no gas) and underwater blowout simulations (pressurized oil with gas) from 100 and 850 m depth. The field trials have been performed in co-operation with NOFO (Norwegian Clean Seas Association for Operating Companies), individual oil companies, the Norwegian Pollution Control Authority (SFT) and Minerals Management Services (MMS). SINTEF has been responsible for the scientific design and monitoring during these field experiments. The main objectives of the trials have been to study the behaviour of different crude oils spilled under various conditions and to identify the operational and logistical factors associated with different countermeasure techniques.The paper gives examples of data obtained on the emulsification of spilled oil during these field experiments. The empirical data generated from the experimental field trials have been invaluable for the validation and development of numerical models at SINTEF for predicting the spreading, weathering and behaviour of oil released under various conditions. These models are extensively used in contingency planning and contingency analysis of spill scenarios and as operational tools during spill situations and combat operations.  相似文献   

8.
A cleanup process has been developed to aid in the removal of crude or fuel oil from shorelines using CytoSol “biosolvent” formulation based on vegetable oil methyl esters in combination with bioremediation enhancers. The CytoSol biosolvent dissolves and floats the oil, the oil/biosolvent mixture is rinsed off with ambient temperature water for collection as a consolidated layer with skimmers. The collected oil mixture can be recycled as a burner fuel. Nutrient enhancers in the formulation then stimulate the natural biodegradation of the remaining residual hydrocarbons. This new approach minimizes physical and chemical impacts to marine organisms, cleans oiled surfaces effectively, and allows the oiled ecosystem to recover with less mortality than conventional methods involving hot water, detergents or other chemical cleaners. CytoSol is ideally suited for port facilities and waterfronts dealing with occasional small oil spills and has undergone extensive laboratory testing for the US EPA. In 1997, the CytoSol biosolvent was licensed in the state of California as a shoreline cleaner and set up for commercial distribution.CytoSol biosolvent can extract heavy petroleum (crude, fuel oils) off shoreline habitats, mussel-encrusted breakwaters or pilings, and estuary vegetation. The viscosity of the product tends to limit the penetration of the CytoSol/oil mixture into sand and gravel beaches, allowing more of the dissolved oil to be removed from the shoreline by washing. The product has a low specific gravity (0.87), tends to consolidate oil, and is practically immiscible with water, so it facilitates the recovery of spilled oil with conventional skimming and absorbent boom technologies. Since it is non-volatile and non-flammable, there is little danger of explosion or fire when spraying it inside confined spaces.  相似文献   

9.
Nearly all crude oils and some heavier refined products form stable water-in-oil (w/o) emulsions when spilled and weathered at sea. Breaking these emulsions and discarding the separated water allow more oil to be recovered and stored by OSRVs (Oil Spill Recovery Vessels) and make the handling of oily waste easier due to viscosity reduction. This study was conducted to determine whether a combination of heat and emulsion breaker is more effective than either technique used alone. The results will be used to prepare guidelines for treatment of w/o emulsions and planning of large-scale tests.A bench-scale laboratory study was carried out using emulsions prepared from different crude oil residues (BCF-17, Alaskan North Slope and Bonny Light) and a Bunker C fuel oil/gas oil blend (IF-80). Tubes containing w/o emulsions, with or without emulsion breaker added, were partially submerged in a water bath at different temperatures to simulate the heating system of the recovered oil tanks onboard the OSRVs. The effectiveness of the emulsion breaking was measured by recording settled water over a 24 h period. The results showed that:
  • •• The stability of a w/o emulsion and its response to heat and emulsion breaker is highly dependent on different characteristics of the oil from which it is formed.
  • •• Stable w/o emulsions that can be slowly broken by heat alone were, in general, broken much more rapidly if emulsion breaker was added in addition to heat.
  • •• The w/o emulsions formed from relatively paraffinic crude oil (e.g. ANS) exhibit faster breaking rates than w/o emulsions formed from crude oils with high asphaltene content, such as BCF-17.
  • •• All w/o emulsions formed from the crude oil residues could be broken by the application of moderate amounts of heat. W/o emulsions produced from Bunker C/Diesel oil blend were not broken at all by relatively high heat inputs (up to 100°C) and required both the addition of heat and emulsion breaker to obtain partially breaking.
  相似文献   

10.
The superior oil absorption capacity of recycled polypropylene (PP) fiber and waste tire powder were used to recover spilled engine oil. We used ASTM F726-99 method to evaluate oil adsorbing capability of PP fiber and found it to have a large, rapid oil sorption capacity. However, its lack of elasticity dramatically limited that capacity after repeated use. Tire powder, which absorbs less oil more slowly, is more elastic than PP fiber and can be used repeatedly up to a hundred times without losing its oil adsorption capability. We combined PP fiber and tire powder to develop a composite material capable of recovering greater amounts of oil than any of its components. This composite can be use repeatedly for at least 100 times. Thus, the material cost for recovering 1 ton of spilled oil is about USD $0.03, making it very competitive on the market.  相似文献   

11.
This paper discusses the changes in spilled oil properties over time and how these changes affect differential density separation. It presents methods to improve differential density, and operational effectiveness when oil-water separation is incorporated in a recovery system. Separators function because of the difference in density between oil and seawater. As an oil weathers this difference decreases, because the oil density increases as the lighter components evaporate. The density also increases as the oil incorporates water droplets to form a water-in-oil emulsion. These changes occur simultaneously during weathering and reduce the effectiveness of separators. Today, the state-of-the-art technologies have limited capabilities for separating spilled marine oil that has weathered.For separation of emulsified water in an emulsion, the viscosity of the oil will have a significant impact on drag forces, reducing the effect of gravity or centrifugal separation. Since water content in an emulsion greatly increases the clean up volume (which can contain as much as two to five times as much water as the volume of recovered oil), it is equally important to remove water from an emulsion as to remove free water recovered owing to low skimmer effectiveness. Removal of both free water and water from an emulsion, has the potential to increase effective skimming time, recovery effectiveness and capacity, and facilitate waste handling and disposal. Therefore, effective oil and water separation in marine oil spill clean-up operations may be a more critical process than credited because it can mean that fewer resources are needed to clean up an oil spill with subsequent effects on capital investment and basic stand-by and operating costs for a spill response organization.A large increase in continuous skimming time and recovery has been demonstrated for total water (free and emulsified water) separation. Assuming a 200 m3 storage tank, 100 m3 h−1 skimmer capacity, 25% skimmer effectiveness, and 80% water content in the emulsion, the time of continuous operation (before discharge of oil residue is needed), increases from 2 to 40 h and recovery of oil residue from 10 to 200 m3.Use of emulsion breakers to enhance and accelerate the separation process may, in some cases, be a rapid and cost effective method to separate crude oil emulsions. Decrease of water content in an emulsion, by heating or use of emulsion breakers and subsequent reduction in viscosity, may improve pumpability, reduce transfer and discharge time, and can reduce oily waste handling, and disposal costs by a factor of 10. However, effective use of emulsion breakers is dependant on the effectiveness of the product, oil properties, application methods and time of application after a spill.  相似文献   

12.
For oil spills in the open sea, operational experience has found that conventional response techniques, such as mechanical recovery, tend to remove only a small fraction of oil during major spills, a recent exception being the Mississippi River spill in Louisiana [Spill Sci. Technol. Bull. 7 (2002) 155]. By contrast, the use of dispersants can enable significant fractions of oil to be removed from the sea surface by dispersing the oil into the water column. It is thought that once dispersed the oil can biodegrade in the water column, although there is little information on the mechanism and rate of biodegradation. Two studies were undertaken on dispersion, microbial colonisation and biodegradation of Forties crude and Alaskan North Slope (ANS) oils under simulated marine conditions. The study using the Forties crude lasted 27 days and was carried out in conditions simulating estuarine and coastal conditions in waters around the UK (15 °C and in the presence of nutrients, 1 mg N-NO3/l), while the ANS study simulated low temperature conditions typical of Prince William Sound (8 °C) and took place over 35 days. The results of both studies demonstrated microbial colonisation of oil droplets after 4 days, and the formation of neutrally buoyant clusters consisting of oil, bacteria, protozoa and nematodes. By day 16, the size of the clusters increased and they sank to the bottom of the microcosms, presumably because of a decrease in buoyancy due to oil biodegradation, however biodegradation of n-alkanes was confirmed only in the Forties study. No colonisation or biodegradation of oil was noted in the controls in which biological action was inhibited. Oil degrading bacteria proliferated in all biologically active microcosms. Without dispersant, the onset of colonisation was delayed, although microbial growth rates and population size in ANS were greater than observed with the Forties. This difference reflected the greater droplet number seen with ANS at 8 °C than with Forties crude at 15 °C. Although these studies differed by more than one variable, complicating comparison, the findings suggest that dispersion (natural or chemical) changes the impact of the oil on the marine environment, potentially having important implications for management of oil spills in relation to the policy of dispersant use in an oil spill event.  相似文献   

13.
Although spilled oil is subject to a range of natural processes, only combustion, photooxidation and biodegradation destroy hydrocarbons and remove them from the biosphere. We present laboratory data that demonstrate the molecular preferences of these processes, and then examine some oil residues collected from previously documented releases to confirm the important roles that these processes play in removing spilled oil from both marine and terrestrial environments.  相似文献   

14.
A three-dimensional numerical model of the physical and chemical behavior and fate of spilled oil has been coupled to a model of oil spill response actions. This coupled system of models for Oil Spill Contingency and Response (OSCAR), provides a tool for quantitative, objective assessment of alternative oil spill response strategies. Criteria for response effectiveness can be either physical (‘How much oil comes ashore?’ or ‘How much oil have we recovered?’) or biological (‘How many biologically sensitive areas were affected?’ or ‘What exposures will fish eggs and larvae experience in the water column?’). The oil spill combat module in the simulator represents individual sets of equipment, with capabilities and deployment strategies being specified explicitly by the user. The coupling to the oil spill model allows the mass balance of the spill to be affected appropriately in space and time by the cleanup operation as the simulation proceeds. An example application is described to demonstrate system capabilities, which include evaluation of the potential for both surface and subsurface environmental effects. This quantitative, objective approach to analysis of alternative response strategies provides a useful tool for designing more optimal, functional, rational, and cost-effective oil spill contingency solutions for offshore platforms, and coastal terminals and refineries.  相似文献   

15.
16.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

17.
The use of vegetable oil as an electron donor to enhance the reductive dechlorination of chlori‐nated solvents as an in situ remediation technology is gaining significant traction. Vegetable oil is a cost‐effective slow‐release electron donor with greater hydrogen‐release efficiency than other electron‐donor products. However, neat vegetable oil can inhibit distribution in aquifers due to the oil droplets blocking the flow of groundwater through the smaller pore spaces in the aquifer materials. This issue has been partially overcome by applying the vegetable oil as an oil‐water emulsion, which typically is created in the field. However, the field preparation results in a mixture of droplet sizes, including larger droplets that can make the emulsions unstable and reduce the soil permeability by blocking soil‐pore throats with oil. RNAS, Inc., has developed a kinetically sta‐ble soybean oil emulsion (“Newman Zone”) consisting of submicron droplets with less droplet‐size variation than field‐prepared emulsions. This product is composed of a blend of fast‐release (sodium lactate) and slow‐release (soybean oil) electron donors. The emulsion is produced in a stable factory environment in which it is pasteurized and packaged in sterile packaging. This ma‐terial can be utilized as an electron donor without further treatments or amendments in the field. This article discusses factors associated with selecting electron donors and the development of vegetable oil–based products. A case study of an application of Newman Zone at a former adhe‐sives manufacturing facility is then presented. The case study demonstrates the effect of Newman Zone in reducing chlorinated solvent concentrations in groundwater by both rapidly stimulating initial microbial activity and supporting long‐term reductive dechlorination with a slow‐release electron donor. © 2006 Wiley Periodicals, Inc.  相似文献   

18.
采用自制的油泥分离剂通过热化学分离法处理聚驱油田现场产生的含聚油泥。采用正交实验得到的最佳工艺参数为:剂泥比2.0 m L/g,反应温度80℃,反应时间30 min,搅拌转速500 r/min,在此工艺条件下原油回收率为92.08%。利用支持向量机运算法(SVM)建立模型,分析了各工艺参数之间的交互作用,得出优化后的含聚油泥处理工艺参数为:剂泥比2.5 m L/g,反应温度80℃,反应时间34 min,搅拌转速530 r/min,理论上的最高原油回收率为94.76%。对于模型优选出的工艺参数进行了5组验证实验,平均原油回收率达94.50%。采用优选工艺参数处理3种不同来源的含聚油泥,原油回收率均高于90%。  相似文献   

19.
旋流萃取分离技术处理石化电脱盐废水   总被引:1,自引:0,他引:1       下载免费PDF全文
陈永强  龚小芝  陈发 《化工环保》2015,35(3):297-299
采用旋流萃取分离技术处理某炼油厂常减压装置电脱盐废水(初始废水含油量约为5 000 mg/L),优化了废水除油的工艺条件。试验结果表明,废水除油的最佳工艺条件为:旋流萃取分离机中心转子的转速960 r/min、废水流量2 000 L/h、废水温度80℃。废水经旋流萃取分离后,废水的含油量小于200 mg/L,废水除油效果较好;分离后油相的含水量约为0.1%(w),盐质量浓度小于20 mg/L,可回注到常减压装置原料罐循环利用。对于2 Mt/a的常减压装置,采用旋流萃取分离技术后,每年可减少支出100.4万元。  相似文献   

20.
Experiments using biodiesel derived from vegetable oils have demonstrated the considerable potential for removing crude oil from contaminated beaches. During laboratory studies in small boxes, contaminated sand treated with biodiesel also demonstrated the rapid biodegradation of the crude oil. Water soluble components were washed through the sand columns and these components subsequently precipitated with cold storage. This solid fraction was not soluble in organic solvents but could be re-dissolved in dilute acid. The sediments after four weeks were black in colour due to the precipitation of metal sulphides although no H2S was generated because the pH of the seawater kept the sulphides in solution. Further work is investigating which components of the oil were degraded and what products were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号