首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the course of our studies on the molecular mechanisms involved in peroxisome biogenesis, we have isolated several mutants of the methylotrophic yeast Hansenula polymorpha impaired in the import of peroximal matrix proteins. These mutants are characterized by the presence of small intact peroxisomes, while the bulk of the peroxisomal matrix protein is not imported and resides in the cytosol (Pim? phenotype). Genetic analysis of back-crossed mutants revealed five different complementation groups, which were designated PERIPER5. Mapping studies to determine the linkage relationships indicated that the observed Pim? phenotypes were determined by single recessive nuclear mutations. The different mutants had comparable phenotypes: (i) they were impaired to utilize methanol as the sole source of carbon and energy but grew well on various other compounds, including nitrogen sources, the metabolism of which is known to be mediated by peroxisome-borne enzymes in wild-type cells; (ii) all peroxisomal enzymes tested were induced, assembled and activated as in wild-type cells although their activities varied between the different representative mutants; (iii) all peroxisomal proteins, whether constitutive or inducible, were found both in the cytosol and in the small peroxisomes. These results suggest that a general, major import mechanism is affected in all mutants.  相似文献   

2.
We have studied growth of two peroxisome-deficient mutant strains of Hansenula polymorpha on glucose in the presence of different organic nitrogen sources (methylamine, ethylamine and D -alanine), the metabolism of which is mediated by peroxisome-borne oxidases in wild-type (WT) cells. Both strains grew well on each of these substrates with growth rates comparable to WT cells. Growth on both methylamine and ethylamine was associated with enhanced levels of catalase and amine oxidase in the cells; in D -alanine-grown cells D -amino acid oxidase activity and increased. In WT cells of H-polymorpha the activities of these enzymes were confined to the peroxisomal matrix; however, in both peroxisome-deficient strains their activities were localized in the cytosol. Electron microscopy indicated that, dependent on the stage of growth, the enzymes may form large protein aggregates. The molecular masses of both amine oxidase and D -amino acid oxidase in the mutant strains were identical to their respective counterparts in WT cells, indicating that both proteins were correctly assembled and active in the cytosol.  相似文献   

3.
Many yeast peroxisome biogenesis mutants have been isolate in which peroxisomes appear to be completely absent. Introduction of a wild-type copy of the defective gene causes the reappearance of peroxisomes, despite the fact that new peroxisomes are thought to form only from pre-existing peroxisomes. This apparent paradox has been explained for similar human mutant cell lines (from patients with Zellweger syndrome) by the discovery of peroxisomal membrane ghosts in the mutant cells (Santos, M. J., T. Imanaka, H. Shio, G. M. Small and P. B. Lazarow. 1988. Science 239 , 1536–1538). Introduction of a wild-type gene is thought to restore to the ghosts the ability to import matrix proteins, and thus lead to the refilling of the peroxisomes. It is vitally important to our understanding of peroxisome biogenesis to determine whether the yeast mutants contain ghosts. We have solved this problem by introducing an epitope-tagged version of Pas3p, a peroxisome integral membrane protein (that is essential for peroxisome biogenesis). Nucleotides encoding a nine amino acid HA epitope were added to the PAS3 gene immediately before the stop codon. The tagged gene (PAS3HA) was inserted in the genome, replacing the wild-type gene at its normal locus. It was fully functional (the cells assembled peroxisomes normally and grew on oleic acid) but the expression level was too low to detect the protein with monoclonal antibody 12CA5. PAS3HA was expressed in greater quantity from an episomal plasmid with the CUP1 promoter. The gene product, Pas3pHA, was detected by immunogold labelling on the membranes of individual and clustered peroxisomes; the clusters appeared as large spots in immunofluorescence. PAS3HA was similarly expressed in peroxisome biogenesis mutants peb2 and peb4, which lack morphologically recognizable peroxisomes. Gold-labelled membranes were clearly visible in both mutants: in peb2 the labelled membrane vesicles were generally much smaller than those in peb4, which resembled normal peroxisomes in size.  相似文献   

4.
Cdc42p is a highly conserved GTPase involved in controlling cell polarity and polarizing the actin cytoskeleton. The CDC42 gene was first identified by the temperature-sensitive cell-division-cycle mutant cdc42-1ts in Saccharomyces cerevisiae. We have determined the DNA and predicted amino-acid sequence of the cdc42-1ts allele and identified multiple mutations in the coding region and 5′ promoter region, thereby limiting its usefulness in genetic screens. Therefore, we generated additional temperature-conditional-lethal alleles in highly conserved amino-acid residues of both S. cerevisiae and Schizosaccharomyces pombe Cdc42p. The cdc42W97R temperature-sensitive allele in S. cerevisiae displayed the same cell-division-cycle arrest phenotype (large, round unbudded cells) as the cdc42-1ts mutant. However, it exhibited a bud-site selection defect and abnormal bud morphologies at the permissive temperature of 23°C. These phenotypes suggest that Cdc42p functions in bud-site selection early in the morphogenetic process and also in polarizing growth patterns leading to proper bud morphogenesis later in the process. In S. pombe, the cdc42W97R mutant displayed a cold-sensitive, loss-of-function phenotype when expressed from the thiamine-repressible nmt1 promoter under repressing conditions. In addition, cdc42T58A and cdc42S71P mutants showed a temperature-sensitive loss-of-function phenotype when expressed in S. pombe; these mutants did not display a conditional phenotype when expressed in S. cerevisiae. These new conditional-lethal cdc42 alleles will be important reagents for the further dissection of the cell polarity pathway in both yeasts. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Pex3p has been implicated in the biosynthesis of the peroxisomal membrane of the yeast Hansenula polymorpha. Here we show that in the initial stages of a sharp increase in Pex3p levels, induced in batch cultures of cells of a constructed H. polymorpha strain, which contained seven copies of PEX3 under control of the alcohol oxidase promoter (WT::PAOX.PEX37x), strongly interfered with normal peroxisome proliferation. Ultrastructural studies demonstrated that in such cells numerous small peroxisomes had developed, which were absent in wild-type controls. These organelles, which contained typical peroxisomal matrix and membrane proteins (alcohol oxidase, catalase, Pex3p, Pex10p and Pex14p), showed a relatively low density (1·18 g cm−3) after sucrose gradient centrifugation of WT::PAOX.PEX37x homogenates, compared to normal peroxisomes (1·23 g cm−3). We furthermore demonstrated that these early induced, small peroxisomes were protected against glucose-induced proteolytic degradation and did not fuse to form larger organelles. Remarkably, the induction of these small peroxisomes was paralleled by a partial defect in matrix protein import, reflected by the mislocalization of minor amounts of alcohol oxidase protein in the cytosol. However, when the cells were subsequently placed under conditions in which the synthesis of a new matrix enzyme (amine oxidase) was induced while simultaneously the excessive proliferation was repressed (by repression of the PAOX), amine oxidase protein was selectively incorporated into these organelles. This indicated that the small peroxisomes had regained a normal protein import capacity. Based on these results we argue that peroxisome proliferation and matrix protein import are coupled processes in H. polymorpha. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
We have studied selective inactivation of alcohol oxidase (AO) in two peroxisome-deficient (PER) mutants of the yeast Hansenula polymorpha. In these mutants high activities of cytosolic AO are induced by different growth conditions. At enhanced expression rates AO is arranged in large crystalloids in the cytosol, whereas smaller crystalloids are often observed inside the nucleus. Transfer of cells of the PER mutant 125-2E, which completely lacks peroxisomes, to glucose-excess conditions did not lead to degradative inactivation of AO and catalase as observed in wild-type (WT) cells used as a control. The gradual decrease in enzyme activities in the PER mutant could be accounted for by dilution of existing enzyme into newly formed cells as a result of growth. Morphologically, degradation of the cytosolic crystalloids was also not observed. Similar results were obtained with a second PER mutant (strain 124-2D), impaired in the import of peroxisomal matrix proteins. This mutant is characterized by the presence of small peroxisomes and large cytosolic AO crystalloids. Upon a shift of cells to glucose-excess conditions only part of the small peroxisomes present in these cells were degraded by mechanisms similar to those observed in WT cells placed under identical conditions. These results indicate that degradative inactivation of AO in H. polymorpha is strictly dependent on the localization of the enzyme inside peroxisomes and furthermore suggests that the mechanisms triggering this process are not directed against AO protein, but instead, to the membrane surrounding the organelle. Transfer of cells to methanol- or ethanol-containing media both resulted in modification inactivation of AO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cdc24p and Cdc42p are involved in the control of cell polarity during the Saccharomyces cerevisiae cell cycle. Cdc42p is a member of the Ras superfamily of GTPases and Cdc24p displays limited amino-acid sequence similarity with the Dbl proto-oncoprotein, which acts to stimulate guanine-nucleotide exchange on human Cdc42p. We have performed several genetic experiments to test whether Cdc24p and Cdc42p interact within the cell. First, overexpression of Cdc24p suppressed the dominant-negative cdc42D118A allele. Second, overexpression of wild-type CDC24 and CDC42 genes together was a lethal event resulting in a morphological phenotype of large, round, unbudded cells, indicating a loss of cell polarity. Third, a cdc24ts cdc42ts double mutant exhibited a synthetic-lethal phenotype at the semi-permissive temperature of 30°C. These data suggest that Cdc24p and Cdc42p interact within the cell and that Cdc24p may be involved in the regulation of Cdc42p activity.  相似文献   

8.
As a first step in a genetic approach towards understanding peroxisome biogenesis and function, we have sought to isolate mutants of the methylotrophic yeast Hansenula polymorpha which are deficient in peroxisomes. A collection of 260 methanol-utilization-defective strains was isolated and screened for the ability to utilize a second compound, ethanol, the metabolism of which involves peroxisomes. Electron microscopical investigations of ultrathin sections of selected pleiotropic mutants revealed two strains which were completely devoid of peroxisomes. In both, different peroxisomal matrix enzymes were active but located in the cytosol; these included catalase, alcohol oxidase, malate synthase and isocitrate lyase. Subsequent backcrossing experiments revealed that for all crosses involving both strains, the methanol- and ethanol utilizing-deficient phenotypes segregated independently of each other, indicating that different gene mutations were responsible for these phenotypes. The phenotype of the backcrossed peroxisome-deficient derivates was identical: defective in the ability to utilize methanol but capable of growth on other carbon sources, including ethanol. The mutations complemented and therefore were recessive mutations in different genes.  相似文献   

9.
We isolated the Saccharomyces cerevisiae GRC5 (gr owth control) gene by functional complementation in vivo of a ts (t emperature s ensitive) mutation. Phenotypic analysis suggested involvement of GRC5 in cell growth and proliferation. Mutant cells arrest their cell cycles after one to three cell divisions predominantly as mother cells with a large bud. In the region of the septum, a massive accumulation of cell wall material is observed. The mother and daughter nuclei are well separated and spindles are no longer present, while the cytoskeleton is of aberrant appearance. Arrested cells do not perform protein synthesis and are unable to mate. Furthermore, grc5-1ts cells rapidly lose viability at the restrictive temperature (37°C) only on full media, but not under nitrogen-starvation conditions, indicating that proper response to this nutrient limitation is still intact in mutant cells after cell cycle arrest. The sequence of GRC5 translates into a basic protein of 221 amino acids with a corresponding Mr of 25·4 kDa. GRC5 is a member of the highly conserved QM gene family, members of which have been reported from plants, invertebrates and vertebrates. The amino acid sequence of GRC5 over its entire length is more than 60% identical to the human QM protein, expression of which is associated with loss of the tumorigenic phenotype in a cell line derived from Wilms' tumor, a malignancy of the embyronic kidney. Here, we show that GRC5 is an essential yeast gene, the function of which as inferred from analysis of the grc5-1ts mutant is crucial for establishment of proper cytoskeletal structure and regulation of growth in yeast cells.  相似文献   

10.
Single recessive mutations of the methylotrophic yeast Pichia methanolica acs1, acs2, acs3 and icl1 affecting acetyl-CoA synthetase and isocitrate lyase, and growth on ethanol as sole carbon and energy source, caused a defect in autophagic peroxisome degradation during exposure of methanol-grown cells to ethanol. As a control, a mutation in mdd1, which resulted in a defect of the ‘malic’ enzyme and also prevented ethanol utilization, did not prevent peroxisome degradation. Peroxisome degradation in glucose medium was unimpaired in all strains tested. Addition of ethanol to methanol-grown cells of acs1, acs2, acs3 and icl1 mutants led to an increase in average vacuole size. Thickening of peroxisomal membranes and tight contacts between groups of peroxisomes and vacuoles were rarely observed. These processes proceeded much more slowly than in wild-type or mdd1 mutant cells incubated under similar conditions. No peroxisomal remnants were observed inside vacuoles in the cells of acs1, acs2, acs3 and icl1 mutants after prolonged cultivation in ethanol medium. We hypothesize that the acs and icl mutants are defective in synthesis of the true effector—presumably glyoxylate—of peroxisome degradation in ethanol medium. Lack of the effector suspends peroxisome degradation at an early stage, namely signal transduction or peroxisome/vacuole recognition. Finally, these defects in peroxisome degradation resulted in mutant cells retaining high levels of alcohol oxidase which further led to increased levels of acetaldehyde accumulation upon incubation of mutant cells with ethanol. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
We have studied the role of flavin adenine dinucleotide (FAD) in the in vivo assembly of peroxisomal alcohol oxidase (AO) in the yeast Hansenula polymorpha. In previous studies, using a riboflavin (Rf) autotrophic mutant, an unequivocal judgement could not be made, since Rf-limitation led to a partial block of AO import in this mutant. This resulted in the accumulation of AO precursors in the cytosol where they remained separated from the putative peroxisomal AO assembly factors. In order to circumvent the peroxisomal membrane barrier, we have now studied AO assembly in a peroxisome-deficient/Rf-autotrophic double mutant (Δper1.rif1) of H. polymorpha. By sucrose density centrifugation and native gel electrophoresis, three conformations of AO were detected in crude extracts of Δper1.rif1 cells grown under Rf-limitation, namely active octameric AO and two inactive, monomeric forms. One of the latter forms lacked FAD; this form was barely detectable in extracts wild-type and Δper1 cells, but had accumulated in the cytosol of rif1 cells. The second form of monomeric AO contained FAD; this form was also present in Δper1 cells but absent/very low in wild-type and rif1 cells. In vivo only these FAD-containing monomers associate into the active, octameric protein. We conclude that in H. polymorpha FAD binding to the AO monomer is mediated by a yet unknown peroxisomal factor and represents the crucial and essential step to enable AO oligomerization; the actual octamerization and the eventual crystallization in peroxisomes most probably occurs spontaneously.  相似文献   

12.
We have generated a temperature‐sensitive form of the Ura4p protein from the fission yeast Schizosaccharomyces pombe. A single T‐to‐C mutation at nucleotide 782 (relative to the initiator ATG codon of ura4) changes the leucine residue at position 261 in Ura4p to a proline. The mutant Ura4pts supports growth at 30°C but is unable to allow growth at 37°C in the absence of uracil when a single copy of the gene is integrated into the host chromosome. Using the ura4ts cassette for gene replacements simplifies the identification of transformants in which the disruption construct has undergone homologous integration into the host chromosome, as these individuals contain a single copy of the ura4ts gene and fail to grow when replicated to 37°C in the absence of uracil. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Cereal starches were extracted at 100°C with various proportions of lower alcohols and water to establish optimum conditions. Lipid yields generally exceeding 90% were obtained with one two-hour extraction of maize starch at 100°C when using not less than 14 ml of 75–85% methanol, 10 ml of 75% ethanol, 12 ml of 74–78% n-propanol, 14 ml of 74–78% isopropanol, or 17 ml of 84% n-butanol per gram of starch. Similar results were obtained with wheat A-starch ( > 8 μm granule diameter), wheat B-starch ( < 8 μm granule diameter) and rice starch using n-propanol-water, and with rice starch using methanol-water. Yields decreased if the proportions of alcohol and water were not kept within well-defined limits, especially with butanol and ethanol. The preferred conditions for complete recovery of lipids were two 2-hour extractions and one 1-hour extraction at 100°C with not less than 16 ml of 75% n-propanol per gram of starch.  相似文献   

14.
We have studied the expression of alcohol oxidase (AO) in a peroxisome-deficient mutant strain of Hansenula polymorpha. High levels of octameric, active AO (up to 3·0 U/mg protein) were detected in cells grown at low dilution rates in a glucose-limited chemostat in the presence of choline as the sole nitrogen source. Monomeric or other intermediate forms of AO were not detected in the mutant strain. This indicated that assembly of the protein into active octameric molecules in the cytosol was as efficient as in wild-type cells where this process is confined to the peroxisomal matrix. At relatively low rates of expression (less than 1 U/mg protein) AO was localized throughout the cytosol and, surprisingly, was also present inside the nucleus. However, at enhanced levels large crystalloids were formed. Generally one crystalloid was observed per cell, whereas smaller ones were occasionally found in developing buds. Also large crystalloids have been observed inside the nucleus. These crystalloids were not surrounded by a membrane. Based on the morphology of the molecules that constituted these crystalloids and the results of (immuno)cytochemical experiments we conclude that the crystalloids are composed of octameric AO molecules, arranged in a regular lattice, identical to the 3-dimensional architecture previously described for the crystalline matrix of peroxisomes in methanol-grown wild type cells of H. polymorpha. Attempts to purify the crystalloids by conventional fractionation methods failed, due to their apparent fragility; however, (immuno)cytochemical experiments revealed that catalase and dihydroxyacetone synthase were also associated with these structures.  相似文献   

15.
PEX3 encodes a 52 kDa peroxisomal membrane protein (PMP), essential for peroxisome biogenesis in the yeast Hansenula polymorpha. The relation between Pex3p levels and peroxisome formation was studied in wild type (WT) and Δpex3 strains expressing additional copies of PEX3 under control of a substrate-inducible promoter, namely the strong alcohol oxidase (PAOX) or the weaker amine oxidase (PAMO) promoter. In glucose-grown Δpex3 cells, containing PAOX. PEX3, Pex3p was undetectable and peroxisomes were absent. After induction of these cells on methanol, peroxisomes were rapidly formed. At Pex3p levels up to 7–10 times the values observed in WT controls normal peroxisomes were present. However, at further enhanced Pex3p levels a general matrix protein import defect was observed. This phenomenon was paralleled by aberrant peroxisome assembly and the formation of numerous small vesicles. These vesicles contained Pex3p, together with other H. polymorpha PMPs, but lacked the major matrix proteins which has accumulated in the cytosol. The implications of our results on PEX3 gene regulation and functioning of the peroxisomal matrix protein import machinery in H. polymorpha are discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Meiosis and sporulation in the yeast Saccharomyces cerevisiae requires social communication, mediated by an extracellular factor which is secreted from cells during sporulation and accumulates in a cell density-dependent manner. We show here genetic and biochemical analyses supporting our conclusion that the extracellular factor is bicarbonate acting as an alkali to elevate extracellular pH. Sporulation defects of mdh1 (mitochondrial malate dehydrogenase) mutants and of wild-type cells at low density were rescued extracellularly by addition of bicarbonate or other alkaline solutions to raise medium pH. Addition of bicarbonate (or alkalization of medium) raised steady-state levels of mRNA in respiration-deficient mdh1 mutants and inhibited proliferation of wild-type cells at low density. These results indicate that the two conditions (respiration competency and high cell density), required for meiosis and sporulation, are essential for extracellular accumulation of bicarbonate and resulting alkalization of medium. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
18.
We describe the isolation and characterization of p eroxisomal a ssembly mutants in the genetically manipulable yeast Y arrowia lipolytica (pay mutants). These mutants were initially identified as oleic acid-non-utilizers by their inability to grow on oleic acid, the utilization of which requires peroxisomal β-oxidation enzymes. Identification of a subset of oleic acid-non-utilizers as pay mutants was obtained by a rapid immunofluorescence procedure using antibodies to the peroxisomal targeting signal Ser-Lys-Leu-CO2H. Punctate structures characteristic of peroxisomes were not detected in pay mutants using this technique. This rapid identification by immunofluorescence should be generally applicable to the selection of peroxisomal assembly mutants in other yeasts. To take advantage of the pay mutant system, we constructed a genomic library in the autonomously replicating vector pINA445 and developed an efficient and rapid electroporation procedure for the functional complementation of these mutants. We have been successful in functionally complementing two independent pay mutants. Molecular analysis of these and other complementing genes will allow for characterization of some of the cellular elements involved in peroxisomal assembly.  相似文献   

19.
Saccharomyces cerevisiae mutants lacking Scs7p fail to accumulate the inositolphosphorylceramide (IPC) species, IPC-C, which is the predominant form found in wild-type cells. Instead scs7 mutants accumulate an IPC-B species believed to be unhydroxylated on the amide-linked C26-fatty acid. Elimination of the SCS7 gene suppresses the Ca2+-sensitive phenotype of csg1 and csg2 mutants. The CSG1 and CSG2 genes are required for mannosylation of IPC-C and accumulation of IPC-C by the csg mutants renders them Ca2+-sensitive. The SCS7 gene encodes a protein that contains both a cytochrome b5-like domain and a domain that resembles the family of cytochrome b5-dependent enzymes that use iron and oxygen to catalyse desaturation or hydroxylation of fatty acids and sterols. Scs7p is therefore likely to be the enzyme that hydroxylates the C26-fatty acid of IPC-C. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Via functional complementation we have isolated the Hansenula polymorpha PDD1 gene essential for selective, macroautophagic peroxisome degradation. HpPDD1 encodes a 116 kDa protein with high similarity (42% identity) to Saccharomyces cerevisiae Vps34p, which has been implicated in vacuolar protein sorting and endocytosis. Western blotting experiments revealed that HpPDD1 is expressed constitutively. In a H. polymorpha pdd1 disruption strain peroxisome degradation is fully impaired. Sequestered peroxisomes, typical for the first stage of peroxisome degradation in H. polymorpha, were never observed, suggesting that HpPdd1p plays a role in the tagging of redundant peroxisomes and/or sequestration of these organelles from the cytosol. Possibly, HpPdd1p is the functional homologue of ScVps34p, because—like S. cerevisiae vps34 mutants—H. polymorpha pdd1 mutants are temperature‐sensitive for growth and are impaired in the sorting of vacuolar carboxypeptidase Y. Moreover, HpPdd1p is associated to membranes, as was also observed for ScVps34p. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号