首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Detailed optical lasing characteristics in liquid crystal (LC) microlasers consisting of multiple polymer cholesteric LC (PCLC) layers are presented as broadband resonators sandwiching a layer of thick gain media, dye‐containing nematic LC (NLC) or isotropic liquid, in between. Multiple lasing emission peaks due to Fabry‐Perot cavity modes are observed for both gain media, and their polarization characteristics investigated. To analyze lasing characteristics, specified eigen modes are defined, the polarization states of which are maintained before and after passing through the broadband resonator, and obtained for the present full system by using the Berreman 4 × 4 matrix method. Using these specified eigen modes, the optical density for each mode is calculated and compared with the experimental results, and shows good agreement. Finally, lasing characteristics between the resonators with NLC and isotropic gain media are compared, and the advantages of adopting dye‐doped NLC gain medium are shown for tunable red, green, blue lasing in a microlaser system with a broadband resonator.  相似文献   

2.
A vertical‐alignment (VA) cell of nematic liquid crystals (LCs) was prepared using photoirradiated thin films of a poly(methacrylate) with mesogenic moieties of 4‐trifluoromethoxyazobenzene as the side chains. Optical anisotropy was generated by oblique irradiation of the azobenzene‐containing polymer films with non‐polarized UV light, followed by annealing treatment to enhance the photodichroism, which displayed thermal stability. The combination of oblique exposure to non‐polarized UV light and subsequent annealing treatment brought about high pretilt angles of nematic LCs so that a photoaligned VA LC cell was fabricated. The photopatterned LC cell exhibited electro‐optical properties with excellent optical quality when a voltage was applied even after heating at 100 °C for several hours.  相似文献   

3.
Electrically responsive photonic crystals represent one of the most promising intelligent materials for technological applications in optoelectronics. In this research, a polymer‐stabilized blue phase (PSBP) I film with the self‐organized 3D nanostructure is fabricated, and an electrically tunable photonic bandgap (PBG) is achieved. Interestingly, the large‐scale shift of the PBG covering the entire visible spectrum is found to be asymmetric and can be modulated by the polarity and magnitude of bias voltage. Moreover, to demonstrate the usability in optical devices, blue phase lasers are developed by doping the PSBP material with fluorescent dyes. And mirrorless lasing emission with electrically tunable wavelength is observed. This self‐assembled soft material is prospective to produce large‐scale electrically responsive photonic crystals in facile fabrication process and has enormous potential applications in intelligent optoelectronic devices, such as 3D tunable lasers, reflective full‐color displays, or photonic integrated circuits.  相似文献   

4.
A photonic crystal laser that is tunable throughout the visible in three‐dimensionally switchable directions is demonstrated. This photo‐pumped laser utilizes a dye‐infiltrated, single‐crystal SiO2 opal having incomplete bandgaps. Our results support a gap‐state‐enhanced distributed feedback mechanism for lasing. Three different types of wavelength tunability are demonstrated, each applicable over a different frequency range and involving either single or multiple bandgaps. The many independent laser cavities that exist in one photonic crystal are demonstrated by simultaneously obtaining lasing in various colors and directions from an opal crystal. The observation of characteristic laser emission lines provides a new spectroscopy for characterizing intra‐gap photonic states, which may be useful for developing the photonic crystal analogues of electronic circuitry.  相似文献   

5.
In organic light‐emitting transistors, the structural properties such as the in‐plane geometry and the lateral charge injection are the key elements that enable the monolithic integration of multiple electronic, optoelectronic, and photonic functions within the same device. Here, the realization of highly integrated multifunctional optoelectronic organic device is reported by introducing a high‐capacitance photonic crystal as a gate dielectric into a transparent single‐layer ambipolar organic light‐emitting transistor (OLET). By engineering the photonic crystal multistack and bandgap, it is showed that the integration of the photonic structure has a twofold effect on the optoelectronic performance of the device, i.e., i) to modulate the spectral profile and outcoupling of the emitted light and ii) to enhance the transistor source–drain current by a 25‐fold factor. Consequently, the photonic‐crystal‐integrated OLET shows an order of magnitude higher emitted power and brightness with respect to the corresponding polymer‐dielectric device, while presenting as‐designed electroluminescence spectral and spatial distribution. The results validate the efficacy of the proposed approach that is expected to unravel the technological potential for the realization of highly integrated optoelectronic smart systems based on organic light‐emitting transistors.  相似文献   

6.
Polymer/liquid‐crystal (LC) tubes consisting of an approximately 30 nm thick poly(methyl methacrylate) (PMMA) layer on the outside and a 5 to 10 nm thick discotic liquid‐crystalline layer on the inside of the tube walls have been prepared by wetting ordered porous alumina templates with a pore diameter of 400 nm. Decreasing the pore diameter to 60 nm results in a confinement‐induced transition from a wetting state to a non‐wetting state, and solid rods with a sequential morphology are obtained. The texture of the mesophase depends on the morphology type and the thermal history. Under certain conditions the LC mesophase exhibits a dominant, well‐ordered planar texture where the discotic columns are aligned with the long axes of the tubes. The controlled generation of one‐dimensional nano‐objects possessing mesoscopic fine structures and intrinsic anisotropy should be the first step towards a rational design of miniaturized building blocks.  相似文献   

7.
Conjugated polymer (CP)‐di‐ureasil composite materials displaying a tunable emission color from blue to yellow through white have been prepared using a simple sol–gel processing method. The tunability of the emission color arises from a combination of energy transfer between the di‐ureasil and the CP dopant and the excitation wavelength dependence of the di‐ureasil emission. Incorporation of the CP does not adversely affect the bulk or local structure of the di‐ureasil, enabling retention of the structural and mechanical properties of the host. Furthermore, CP‐di‐ureasils display superior thermal and photostability compared to the parent CPs. Thermogravimetric analysis shows that the onset of thermal decomposition can be increased by up to 130 °C for CP‐di‐ureasils, while photostability studies reveal a significant decrease in the extent of photodegradation. Steady‐state photoluminescence spectroscopy and picosecond time‐resolved emission studies indicate that the observed tunable emission arises as a consequence of incomplete energy transfer between the di‐ureasil and the CP dopant, resulting in emission from both species on direct excitation of the di‐ureasil matrix. The facile synthetic approach and tunable emission demonstrate that CP‐di‐ureasils are a highly promising route to white‐light‐emitters that simultaneously improve the stability and reduce the complexity of CP‐based multilayer device architectures.  相似文献   

8.
Electroluminescence (EL) of organic and polymeric fluorescent materials programmable in the luminance is extremely useful as a non‐volatile EL memory with the great potential in the variety of emerging information storage applications for imaging and motion sensors. In this work, a novel non‐volatile EL memory in which arbitrarily chosen EL states are programmed and erased repetitively with long EL retention is demonstrated. The memory is based on utilizing the built‐in electric field arising from the remnant polarization of a ferroelectric polymer which in turn controls the carrier injection of an EL device. A device with vertically stacked components of a transparent bottom electrode/a ferroelectric polymer/a hole injection layer/a light emitting layer/a top electrode successfully emits light upon alternating current (AC) operation. Interestingly, the device exhibits two distinctive non‐volatile EL intensities at constant reading AC voltage, depending upon the programmed direct current (DC) voltage on the ferroelectric layer. DC programmed and AC read EL memories are also realized with different EL colors of red, green and blue. Furthermore, more than four distinguishable EL states are precisely addressed upon the programmed voltage input each of which shows excellent EL retention and multiple cycle endurance of more than 105 s and 102 cycles, respectively.  相似文献   

9.
10.
The integration of bioinspired chiral cellulose nanocrystal (CNC) films into transistor devices with distinct sensing properties for left‐ and right‐handed circular polarized light (LCPL and RCPL, respectively) is reported. The CNC films with a left‐handed internal long‐range order are infiltrated with sodium ions to yield solid‐state electrolytes with photonic properties capable of LCPL reflection and RCPL transmission. They are employed as gate dielectrics in sputtered amorphous indium–gallium–zinc oxide (a‐IGZO) transistors. The obtained devices operate in depletion mode at low voltages (<2 V) with On–Off ratios of up to 7 orders of magnitude, subthreshold swings around 80 mV dec?1, and saturation mobilities up to 9 cm2 V?1 s?1. Combining the photonic character of the CNC films with the light sensitivity of a‐IGZO, the devices are capable of discrimination between LCPL and RCPL signals in the blue region. These type of devices can find application in photonics, emission, conversion, or sensing with CPL but also imaging or spintronics.  相似文献   

11.
The thermotropic and lyotropic liquid‐crystalline (LC) phases of the ionic self‐assembled complex N,N′,‐bis(2‐(trimethylammonium)ethylene)‐perylene‐3,4,9,10‐tetracarboxyldiimide‐bis(2‐ethylhexyl)sulfosuccinate have been studied using polarizing microscopy, differential scanning calorimetry (DSC), and X‐ray scattering techniques. A two‐dimensional (2D) columnar thermotropic LC phase with π–π stacking of the perylene tectonic units and a lyotropic LC phase in dimethyl sulfoxide (DMSO) have been found. Different techniques have been applied to align both systems and included: surface interactions, electric and magnetic fields, shear force, and controlled domain formation at the LC–isotropic phase‐transition front (PTF). Characterization of the alignment in films has been performed using polarized UV‐vis spectroscopy and transmission null‐ellipsometry. The best results have been obtained for alignment of the material in a lyotropic phase by controlled domain formation at the PTF of the LC–isotropic phase transition. In this case, a dichroic ratio of 18 is achieved with packing of columns of perylenediimide tectons perpendicular to the PTF.  相似文献   

12.
Smart windows are very attractive because they not only provide comfortable indoor conditions for cars and buildings, but also protect privacy. However, current smart windows have problems such as high energy consumption, slow response time, and poor stability. To solve these problems, a single‐step dual stabilization (SSDS) is newly proposed for the fabrication of robust liquid crystal (LC) smart windows switching fast at low voltage. Upon irradiating ultraviolet light on the selected area of the nematic (N) LC optical cell with photoisomerizable macrogelators (B3AZ) and photopolymerizable monomers, NLC physical gels (LCPGs) and partition walls are simultaneously constructed. LCPGs play a role of light shutter under a low electric field (9.6 Vpp) which is ten times lower than that of the conventional polymer‐stabilized LC‐based smart windows. Partition walls constructed by the selected area photopolymerization significantly enhance the mechanical stabilities. Based on the experimental results, it is realized that the NLC layer generated near the partition walls makes the LCPGs respond to a low voltage. Robust SSDS smart windows could open new doors for the development of high‐performance smart windows.  相似文献   

13.
The fabrication of a one‐dimensional photonic crystal without time‐reversal and space‐inversion symmetries was pursued. Theoretical studies predict that such a system would exhibit unusual optical properties, including indirect photonic bandgaps and backward wave propagating eigenmodes. Such a system can be created experimentally by combing magnetooptical nanoparticles with a chiral nematic liquid crystal. The manner in which nanoparticles co‐assemble with a chiral nematic liquid crystal was investigated. It was determined that the addition of nanoparticles to a 5CB‐COC system disrupts the system's helical structure. This disruption lowers the system's phase transition temperatures and inhibits the system's ability to form reflectivity peaks.  相似文献   

14.
Photonic crystals with a complete bandgap can stop the propagation of light of a certain frequency in all directions. We introduce double‐inverse‐opal photonic crystals (DIOPCs) as a new kind of optical switch. In the DIOPC, a movable, weakly scattering sphere is embedded within each pore of the inverse‐opal photonic crystal lattice. Switching between a diffusive reflector and a photonic crystal environment is experimentally demonstrated. Theory shows that a complete bandgap can be realized that can be opened or closed by moving the spheres. This functionality opens up new possibilities for the control of light emission and propagation. The close link and interaction between the chemical synthesis and the computational design and analysis underlines the interdisciplinary focus of this report.  相似文献   

15.
Three new photoreactive brush polyimides (PSPIs), each bearing a different type of chromophore (cinnamoyl (CA), 3‐(2‐furyl)acryloyl (FA), and methacryloyl (MA)) in their bristles (i.e., side groups), are successfully synthesized, and are found to produce good‐quality films with smooth surfaces through conventional spin‐casting and drying processes. These PSPI polymers are thermally stable up to 320 °C. This is the first quantitative investigation of the photoaligning and rubbing‐aligning processabilities of PSPI polymer films, and of the abilities of the resultant films to control the orientation and anchoring of liquid‐crystal (LC) molecules. The chromophores of both poly(1‐cinnamoyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐CA) and poly(1‐3‐(2‐furyl)acryloyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐FA) PSPIs are found to undergo photodimerization in thin films and, to a lesser extent, photoisomerization, resulting in insoluble, crosslinked films. The MA chromophores of 6F‐DAP‐MA PSPI are found to undergo photopolymerization in thin films, which might include photodimerization to a lesser extent, resulting in insoluble, crosslinked films. Thin films of the PSPI polymer chains are found to have excellent unidirectional orientation ability as a result of either photoexposure with linearly polarized UV light (LPUVL) or rubbing. Both the photoaligned and the rubbing‐aligned polymer chains in the PSPI films are demonstrated to effectively induce the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The contribution to LC alignment of the microgrooves developed in the rubbed films is found to be very low. The anchoring energies of the LCs on the photoaligned film surfaces are comparable to those on the rubbing‐aligned film surfaces; the anchoring energies are found to be in the range 0.45–2.25 × 10–5 J m–2, and to depend on which film treatment process is used and which chromophore bristle is present. In summary, the new PSPIs reported in this paper are promising LC alignment‐layer candidates with rubbing‐free processing for the production of advanced LC‐display (LCD) devices, including LCD televisions with large display areas.  相似文献   

16.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

17.
A series of liquid‐crystalline (LC) π‐ ‐conjugated oligothiophenes bearing three or two alkoxy chains at their extremities has been designed and synthesized. These polycatenar oligothiophenes form various LC nanostructures including smectic, columnar, and micellar cubic phases. These properties depend on the number and length of the terminal alkoxy chains. The hole mobilities for the oligothiophenes have been measured. The layered smectic and columnar structures are capable of transporting holes, leading to mobilities of up to 0.01 cm2 V?1 s?1. The columnar LC assemblies have also been explored to produce linearly polarized light‐emission. Fine red polarized fluorescence is observed from a uniaxially aligned film of the oligothiophenes. The redox properties of the oligothiophenes both in solutions and in films have been examined. The oligothiophenes exhibit electrochromism upon applying an oxidative potential. The present design strategy is useful for fabricating a variety of functional electro‐active molecular assemblies.  相似文献   

18.
Ambipolar light‐emitting organic field‐effect transistors (LEFETs) possess the ability to efficiently emit light due to charge recombination in the channel. Since the emission can be made to occur far from the metal electrodes, the LEFET structure has been proposed as a potential architecture for electrically pumped organic lasers. Here, a rib waveguide distributed feedback structure consisting of tantalum pentoxide (Ta2O5) integrated within the channel of a top gate/bottom contact LEFET based on poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) is demonstrated. The emitted light is coupled efficiently into the resonant mode of the DFB waveguide when the recombination zone of the LEFET is placed directly above the waveguide ridge. This architecture provides strong mode confinement in two dimensions. Mode simulations are used to optimize the dielectric thickness and gate electrode material. It is shown that electrode absorption losses within the device can be eliminated and that the lasing threshold for optical pumping of the LEFET structure with all electrodes (4.5 µJ cm?2) is as low as that of reference devices without electrodes. These results enable quantitative judgement of the prospects for realizing an electrically pumped organic laser based on ambipolar LEFETs. The proposed device provides a powerful, low‐loss architecture for integrating high‐performance ambipolar organic semiconductor materials into electrically pumped lasing structures.  相似文献   

19.
Here, the use of metal oxide layers both for charge transport and injection into an emissive semiconducting polymer and also for the control of the in‐plane waveguided optical modes in light‐emitting diodes (LEDs) is reported. The high refractive index of zinc oxide is used to confine these modes away from the absorbing electrodes, and include a nano‐imprinted grating in the polymer layer to introduce distributed feedback and enhance optical out‐coupling. These structures show a large increase in the luminescence efficiency over conventional devices, with photoluminescence efficiency increased by up to 45%. Furthermore, optically‐pumped lasing in hybrid oxide polymer LEDs is demonstrated. A tuneable lasing emission is also obtained in a single device structure by employing a graduated thickness of a zinc oxide inter‐layer. This demonstrates the scope for using such architectures to improve the external efficiency of organic semiconductor LEDs, and opens new possibilities for the realization of polymer injection lasers.  相似文献   

20.
Interference lithography (IL) holds the promise of fabricating large‐area, defect‐free 3D structures on the submicrometer scale both rapidly and cheaply. A stationary spatial variation of intensity is created by the interference of two or more beams of light. The pattern that emerges out of the intensity distribution is transferred to a light sensitive medium, such as a photoresist, and after development yields a 3D bicontinuous photoresist/air structure. Importantly, by a proper choice of beam parameters one can control the geometrical elements and volume fraction of the structures. This article provides an overview of the fabrication of 3D structures via IL (e.g., the formation of interference patterns, their dependence on beam parameters and several requirements for the photoresist) and highlights some of our recent efforts in the applications of these 3D structures in photonic crystals, phononic crystals and as microframes, and for the synthesis of highly non spherical polymer particles. Our discussion concludes with perspectives on the future directions in which this technique could be pursued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号