首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— We have developed a process that enables one to conform polymer‐dispersed liquid‐crystal (PDLC) displays into a particular shape indefinitely. Planar PDLC displays are first fabricated between indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates. This fully functional display can then be conformed to a particular shape by heating above the glass‐transition temperature of PET and then allowing it to cool down to room temperature. The display retains its shape and is fully functional after processing. We have created spiral‐and wave‐like samples and have demonstrated their operation after the conformal process. The stress is relieved in the substrate by conforming. Temperature effects on polymer substrates were investigated for two types of polymer films (PET/ITO substrates and a conducting polymer PEDOT:PSS/PET substrate) to analyze the effects of temperature on the resistance and mechanics of the films under an applied uniaxial strain. We have found a decrease in contrast of the PDLC after conforming, but surprisingly, a reduced threshold voltage and reduced hysterisis occurs.  相似文献   

2.
Abstract— The manufacture of large‐area arrays of thin‐film transistors on polymer substrates using roll‐to‐roll (R2R) processes exclusively is being developed. Self‐aligned imprint lithography (SAIL) enables the patterning and alignment of submicron‐sized features on meter‐scaled flexible substrates in the R2R environment. SAIL solves the problem of precision interlayer registry on a moving web by encoding all the geometry information required for the entire patterning steps into a monolithic three‐dimensional imprint with discrete thickness modulation. The pre‐aligned multiple‐step mask structure maintains its alignment regardless of subsequent substrate distortion. Challenges are encountered in relation to the novel nature of using flexible substrates and building toolsets for the R2R processing. In this paper, methods of the SAIL process, the resulting active‐matrix backplanes, the trajectory of SAIL process development, and the remaining issues for production are presented.  相似文献   

3.
Abstract— Failure mechanisms for flexible conducting substrates are investigated herein in the context of rollable/flexible display applications. Cyclic loading experiments (substrates subjected to multiple cycles of tensile strain) were carried out on both ITO‐coated PET and PEDOT:PSS‐coated PET substrates. The resistance was measured after each bending cycle. The resistance increased with the number of cycles and was not reversible. Even when the tensile strain on the ITO/PET was below the virgin cracking threshold (~2%) previously reported [Appl Phys Lett 76, 1425 (2000)], slight increases in resistance were measurable after just a few cycles.  相似文献   

4.
Abstract— A processing technology based upon a temporary bond—debond approach has been developed that enables direct fabrication of high‐performance electronic devices on flexible substrates. This technique facilitates processing of flexible plastic and metal‐foil substrates through automated standard semiconductor and flat‐panel tool sets without tool modification. The key to processing with these tool sets is rigidifying the flexible substrates through temporary bonding to carriers that can be handled in a similar manner as silicon wafers or glass substrates in conventional electronics manufacturing. To demonstrate the power of this processing technology, amorphous‐silicon thin‐film‐transistor (a‐Si:H TFT) backplanes designed for electrophoretic displays (EPDs) were fabricated using a low‐temperature process (180°C) on bonded‐plastic and metal‐foil substrates. The electrical characteristics of the TFTs fabricated on flexible substrates are found to be consistent with those processed with identical conditions on rigid silicon wafers. These TFTs on plastic exhibit a field‐effect mobility of 0.77 cm2/V‐sec, on/off current ratio >109 at Vds = 10 V, sub‐threshold swing of 365 mV/dec, threshold voltage of 0.49 V, and leakage current lower than 2 pA/μm gate width. After full TFT‐array fabrication on the bonded substrate and subsequent debonding, the flexible substrate retains its original flexibility; this enables bending of the EPD display without loss in performance.  相似文献   

5.
High‐performance and low‐cost flexible hybrid electronics (FHE) are desirable for applications such as Internet of Things (IoT), wearable electronics, and flexible displays. However, design toolkit, design methodology, and compact models that play an essential role in designing complex FHE circuits and systems are still missing today. To fill this gap, here we report (a) the process design kit (PDK) dedicated to electronic design automation for FHE circuits and systems and (b) solution process–proven intellectual property (IP) blocks, which serves as a stepping stone for designing large‐scale flexible thin‐film transistor (TFT) circuits. The proposed FHE‐PDK is made compatible with modern electronics design tools for users to design, simulate, and verify physical design of flexible hybrid systems.  相似文献   

6.
Abstract— A 5.8‐in. wide‐QQVGA flexible color active‐matrix organic light‐emitting‐diode (AMOLED) display consisting of organic thin‐film transistors (OTFTs) and phosphorescent OLEDs was fabricated on a plastic film. To reduce the operating voltage of the OTFTs, Ta2O5 with a high dielectric constant was employed as a gate insulator. Pentacene was used for the semiconductor layer of the OTFTs. This layer was patterned by photolithography and dry‐etched using a dual protection layer of poly p‐xylylene and SiO2 film. Uniform transistor performance was achieved in the OTFT backplane with QQVGA pixels. The RGB emission layers of the pixels were formed by vacuum deposition of phosphorescent small molecules. The resulting display could clearly show color moving images even when it was bent and operated at a low driving voltage (below 15 V).  相似文献   

7.
Abstract— A low‐temperature amorphous‐silicon (a‐Si:H) thin‐film‐transistor (TFT) backplane technology for high‐information‐content flexible displays has been developed. Backplanes were integrated with frontplane technologies to produce high‐performance active‐matrix reflective electrophoretic ink, reflective cholesteric liquid crystal and emissive OLED flexible‐display technology demonstrators (TDs). Backplanes up to 4 in. on the diagonal have been fabricated on a 6‐in. wafer‐scale pilot line. The critical steps in the evolution of backplane technology, from qualification of baseline low‐temperature (180°C) a‐Si:H process on the 6‐in. line with rigid substrates, to transferring the process to flexible plastic and flexible stainless‐steel substrates, to form factor scale‐up of the TFT arrays, and finally manufacturing scale‐up to a Gen 2 (370 × 470 mm) display‐scale pilot line, will be reviewed.  相似文献   

8.
9.
ZnO thin films were successfully grown on flexible plastic substrates using radio-frequency mag-netron sputtering method at room temperature.The effects of the sputtering power on the quality of the ZnO films have been investigated.The results show that thin films were polycrystalline,with wurtzite structure and a strong preferred c-axis orientation (002).The root-mean-square (rms) surface roughness of the ZnO thin films is 22.1 nm.The ZnO thin films fabricated by sputtering with 70 W sputtering power have a high mobility of 34.33 cm 2 /V·s.The ZnO films are shown to be compatible with flexible display on plastic substrates.  相似文献   

10.
In this letter, solution‐processed flexible zinc‐tin oxide (Z0.35T0.65O1.7) thin‐film transistors with electrochemically oxidized gate insulators (AlOx:Nd) fabricated on ultra‐thin (30 µm) polyimide substrates are presented. The AlOx:Nd insulators exhibited wonderful stability under bending and excellent insulating properties with low leakage current, high dielectric constant, and high breakdown field. The device exhibited a mobility of 3.9 cm2/V · s after annealing at 300 °C. In addition, the flexible device was able to maintain the electricity performance under various degrees of bending, which was attributed to the ultra‐thin polyimide substrate.  相似文献   

11.
Abstract— Coatings of indium tin oxide (ITO) nanoparticles on different flexible polymer substrates were investigated with respect to the achievable sheet resistance and their electrical behavior under oscillatory bending. As substrate materials, polyethyleneterephthalate (PET), polyethylenenaphthalate (PEN), polyetheretherketone (PEEK), and polyimide (PI) were chosen, the surface resistances on the different polymer substrates were compared as a function of annealing temperature and surface topography. The surface topography, which has a strong influence on the surface resistance, was characterized by means of a white‐light confocal (WL‐CF) microscope. On the PET substrate, which exhibits the smoothest surface, the coating of ITO nanoparticles shows the lowest sheet resistance of 2 kΩ/□ for a layer thickness of 3 μm and an annealing temperature of 200°C. Furthermore, the electrical behavior of coatings of ITO nanoparticles under oscillatory bending was investigated using a special device. These coatings show a cyclic change of the conductivity which can be explained by an alternating compression and extension of crack flanks under the applied stress. Due to the growing number of cracks with increasing number of cycles, a decrease of the conductivity is observed in the bent state as well as in the balanced state. For a small bending radii, the decrease of the conductivity is stronger due to more cracks caused by the higher tensile stresses in the layer. The electrical behavior of the coatings of the annealed ITO nanoparticles on PET films under oscillatory bending was compared with commercially available sputtered ITO coatings. The annealed coatings of ITO nanoparticles demonstrate better electrical properties under oscillatory bending than coatings of sputtered ITO. The different electrical behavior under oscillatory bending can be related to differences in crack formation.  相似文献   

12.
Abstract— A non‐contact jet‐printed mask‐patterning process is described. By combining digital imaging with jet printing, digital lithography was used to pattern a‐Si:H‐based electronics on glass and plastic substrates in place of conventional photolithography. This digital lithographic process is capable of layer‐to‐layer registration of ±5 μm using electronic mask files that are directly jet printed onto a surface. Aminimum feature size of 50 μm was used to create 180 × 180 element backplanes having 75‐dpi resolution for display and image‐sensor applications. By using a secondary mask process, the minimum feature size can be reduced down to ~15 μm for fabrication of short‐channel thin‐film transistors. The same process was also used to pattern black‐matrix wells in fabricating color‐filter top plates in LCD panels.  相似文献   

13.
The study is focused on the fundamental understanding of behaviors of polymer films coated with indium tin oxide (ITO) of varying thicknesses and thus various conductivities/transparencies in repeated bending by tracking the electrical resistivity real‐time using a specially designed multi‐purpose flexing system. The results show that temporal increases of resistance provide important clues as to the initiation and progress of failure. In tension, the resistance typically remains flat unless a critical minimum radius of curvature is breached that leads to progressive cracking of ITO coating bringing rapid rise of resistance. This critical minimum radius of curvature increases with the increase of ITO coating thickness making the higher conductivity films more susceptible to damage. In compression mode, similar temporal signature can be found when bent to a curvature below a critical minimum radius. When cracks form in both modes, the resistance signature changes to one of oscillation and the high and low values observed at each cycle progressively increase with more cycles leading ultimately to catastrophic failure.  相似文献   

14.
Abstract— Thin films from low‐density networks of single‐walled carbon nanotubes (SWNTs) are intriguing new two‐dimensional electronic materials because they have excellent tunable electrical, optical, and mechanical properties. Such properties coupled with room‐temperature deposition from solution ensure that the material will have profound impact on emerging technologies such as cheap, flexible plastic electronics and smart fabrics and windows. These optoelectronic properties of SWNT thin films make them a potentially good replacement for indium tin oxide (ITO), used widely in photovoltaics, organic, and inorganic light‐emitting diodes, displays, touch screens, and smart windows.  相似文献   

15.
Abstract— Suftla is a technology that is used to transfer polycrystalline silicon (polysilicon) thin‐film‐transistor (TFT) circuits from an original glass substrate to a plastic sheet. The electronic devices in the next generation will be thin, lightweight, and will handle huge amounts of data, yet consume less energy. Suftla technology, together with high‐performance polysilicon TFTs, meets all these requirements because we have developed a variety of smart flexible electronic devices, such as thin paperback‐sized displays and microprocessors. Suftla will usher in a new era of life‐enhancing flexible microelectronics.  相似文献   

16.
Abstract— The unique properties of carbon nanotubes (CNTs) promise innovative solutions for a variety of display applications. The CNTs can be deposited from suspension. These simple and low‐cost techniques will replace time‐consuming and costly vacuum processes and can be applied to large‐area glass and flexible substrates. Single‐walled carbon nanotubes (SWNTs) have been used as conducting and transparent layers, replacing the brittle ITO, and as the semiconducting layer in thin‐film transistors (TFTs). There is no need for alignment because a CNT network is used instead of single CNTs. Both processes can be applied to glass and to flexible plastic substrates. The transparent and conductive nanotube layers can be produced with a sheet resistance of 400 Ω/□ at 80% transmittance. Such layers have been used to produce directly addressed liquid‐crystal displays and organic light‐emitting diodes (OLED). The CNT‐TFTs reach on/off ratios of more than 105 and effective charge‐carrier mobilities of 1 cm2/V‐sec and above.  相似文献   

17.
Abstract— The image quality of an OTFT‐driven flexible AMOLED display has been improved by enhancing the performance of OTFTs and OLEDs. To reduce the operating voltage of OTFTs on a plastic film, Ta2O5 with a high dielectric constant was used as a gate insulator. The organic semiconductor layer of the OTFT was successfully patterned by a polymer separator, which is an isolating wall structure using an organic material. The OTFT performance, such as its current on/off ratio, carrier mobility, and spatial uniformity on the backplane, was enhanced. A highly efficient phosphorescent OLED was used as a light‐emission device. A very thin molybdenum oxide film was introduced as a carrier‐injection layer on a pixel electrode to reduce the operating voltage of the OLED. After an OTFT‐driven flexible AMOLED display was fabricated, the luminance and uniformity on the display was improved. The fabricated display also showed clear moving images, even when it was bent at a low operating voltage.  相似文献   

18.
Abstract— New smart-card applications like purse cards, etc. require an integrated display which allows the card-holder to read information which is stored on the IC of the card. On the other hand, the integration of a display into a plastic card requires some very specific features like flexibility and pressure stability, low-voltage CMOS-addressing, memory capability, and, of course, a reflective mode since no backlight is available. In this paper, two bistable reflective LCD solutions using ferroelectric and cholesteric LCs are discussed and very promising prototype results are presented. Pressure and bending tests as well as contrast measurements are compared in order to show the potential of meeting the requirements for use in smart cards.  相似文献   

19.
20.
The growing market demand for a wide variety of product models and small batch production makes flexible robotized production systems an emerging need in industry. Today, in manufacturing applications, general purpose grippers are not very considered, and robot end effectors are properly designed for the specific task with a strongly limited versatility. Flexibility is thus usually obtained by using a different tool for each family of parts: a tool changing system allows the robot to rapidly replace the tool on the end effector; tools are stored in a tool magazine allocated in the workcell. However, such systems are expensive and their use can affect the working cycle-time. This paper presents the design and testing of a variable-aperture, cost-effective gripper, capable of adapting its aperture (grasp width) to different handling demands, without affecting the working-cycle time of the production system. The solution proposed consists of (1) an electrically-actuated mechanism, which allows it to satisfy flexibility requirements, by regulating the aperture in hidden time; (2) a pneumatically-actuated mechanism to achieve high performance in open/close operations. Simulations and preliminary tests showed that this type of design can be a suitable solution to increase flexibility in robotized workcells without increasing the cycle time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号