首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
I dynamic bandwidth allocation (DBA) scheme, an inter–optical network unit (ONU) bandwidth scheduling, is presented to provide quality of service (QoS) to different classes of packets in Ethernet passive optical networks (EPONs). This scheme, referred to as TADBA, is based on efficient threshold reporting from, and adaptive polling order rearranging of, ONUs. It has been shown that the network resources are efficiently allocated among the three traffic classes by guaranteeing the requested QoS, adaptively rearranging the polling orders, and avoiding nearly all fragmentation losses. Simulation results using an OPNET network simulator show that TADBA performs well in comparison to the available allocation scheme for the given parameters, such as packet delay and channel utilization.  相似文献   

2.
This article proposes a PRNN/ERLS-based predictive QoS-promoted dynamic bandwidth allocation (PQ-DBA) scheme for upstream transmission in Ethernet passive optical network (EPON) systems. The proposed PQ-DBA scheme originally divides incoming packets of voice, video, data service traffic into six priorities, where packets having less room before QoS requirements violation or being in starvation situation will be dynamically promoted to high priority cycle-by-cycle. It predicts packets arriving at prediction interval for ONUs using pipeline recurrent neural network (PRNN)/extended recursive least squares (ERLS) so that the bandwidth allocation can be more up-to-date and then accurate. Simulation results show that the proposed PQ-DBA scheme achieves higher system utilization and lower average voice, video, data packet delay time than the DBAM scheme [Luo and Ansari, OSA J Opt Netw 4(9):561–572] by 4, and 21, 90, 43%, respectively, and the PQ-DBA scheme but without prediction by 2, and 26, 29, 34%, respectively.  相似文献   

3.
The fiber‐wireless (FiWi) access network is a very promising solution for next‐generation access networks. Because of the different protocols between its subnets, it is hard to globally optimize the operation of FiWi networks. Network virtualization technology is applied to FiWi networks to realize the coexistence of heterogeneous networks and centralized control of network resource. The existing virtual resource management methods always be designed to optimize virtual network (VN) request acceptance rate and survivability, but seldom consider energy consumption and varied requirements of quality of service (QoS) satisfaction, which is a hot and important topic in the industrial field. Therefore, this paper focuses on the QoS‐aware cross‐domain collaborative energy saving mechanism for FiWi virtual networks. First, the virtual network embedding (VNE) model, energy consumption model, and VNE profit model of FiWi networks are established. Then, a QoS‐aware in‐region VN embedding mechanism is proposed to guarantee service quality of different services. After that, an underlying resource updating mechanism based on energy efficiency awareness is designed to realize low‐load ONU and wireless routers co‐sleep in FiWi networks. Finally, a QoS‐aware re‐embedding mechanism is presented to allocate proper resource to the VNs affected by the sleeping mechanism. Especially for video VNs, a re‐embedding scheme which adopts traffic splitting and multipath route is introduced to meet resource limitation and low latency. Simulation results show that the proposed mechanism can reduce FiWi network's energy consumption, improve VNE profit, and ensure high embedding accepting rate and strict delay demand of high‐priority VNs.  相似文献   

4.
In this article, we examine a candidate architecture for wavelength-division multiplexed passive optical networks (WDM-PONs) employing multiple stages of arrayed-waveguide gratings (AWGs). The network architecture provides efficient bandwidth utilization by using WDM for downstream transmission and by combining WDM with time-division multiple access (TDMA) for upstream transmission. In such WDM-PONs, collisions may occur among upstream data packets transmitted simultaneously from different optical networking units (ONUs) sharing the same wavelength. The proposed MAC protocol avoids such collisions using a request/permit-based multipoint control protocol, and employs a dynamic TDMA-based bandwidth allocation scheme for upstream traffic, called minimum-guaranteed maximum request first (MG-MRF), ensuring a reasonable fairness among the ONUs. The entire MAC protocol is simulated using OPNET and its performance is evaluated in terms of queuing delay and bandwidth utilization under uniform as well as non-uniform traffic distributions. The simulation results demonstrate that the proposed bandwidth allocation scheme (MG-MRF) is able to provide high bandwidth utilization with a moderately low delay in presence of non-uniform traffic demands from ONUs.  相似文献   

5.
Dynamic bandwidth allocation (DBA) is an open and hot topic in the Ethernet passive optical network (EPON), which is regarded as one of the best choices for next-generation access networks. This paper proposes an estimation-based scheme, interleaved polling with adaptive cycle time with grant estimation (IPACT-GE), for effective upstream channel sharing among multiple optical network units (ONUs) in EPONs. By estimating the amount of new packets arriving between two consecutive pollings and granting ONUs with extra estimated amount, the proposed IPACT-GE scheme can achieve shorter waiting delay and less buffer occupancy at the light load than IPACT, a significant DBA scheme in EPONs. Moreover, when combined with the strict priority queue (SPQ) mechanism to provide differentiated services, IPACT-GE can greatly mitigate the light load penalty that is obvious in the IPACT solution combined with SPQ.   相似文献   

6.
光无线融合接入网存在光网络单元利用率低,数据传输过程中控制开销较大的问题。该文提出一种带有上行数据帧聚合的节能机制,建立M/G/1模型分析数据帧在无线域节点及光域节点的队列时延,结合不同优先级业务的最大容忍时延,推导各优先级聚合帧在不同网络状态下的最佳长度,进而根据所得到的最佳帧长对光域节点进行休眠调度,在保障业务时延的前提下,尽可能地延长节点休眠时间长度,提高网络能量效率。仿真结果表明,所提方法在有效降低整个网络能耗的同时能够保证业务的时延性能。  相似文献   

7.
The General Packet Radio Service (GPRS) offers performance guaranteed packet data services to mobile users over wireless frequency-division duplex links with time division multiple access, and core packet data networks. This paper presents a dynamic adaptive guaranteed Quality-of-Service (QoS) provisioning scheme over GPRS wireless mobile links by proposing a guaranteed QoS media access control (GQ-MAC) protocol and an accompanying adaptive prioritized-handoff call admission control (AP-CAC) protocol to maintain GPRS QoS guarantees under the effect of mobile handoffs. The GQ-MAC protocol supports bounded channel access delay for delay-sensitive traffic, bounded packet loss probability for loss-sensitive traffic, and dynamic adaptive resource allocation for bursty traffic with peak bandwidth allocation adapted to the current queue length. The AP-CAC protocol provides dynamic adaptive prioritized admission by differentiating handoff requests with higher admission priorities over new calls via a dynamic multiple guard channels scheme, which dynamically adapts the capacity reserved for dealing with handoff requests based on the current traffic conditions in the neighboring radio cells. Integrated services (IntServ) QoS provisioning over the IP/ATM-based GPRS core network is realized over a multi-protocol label switching (MPLS) architecture, and mobility is supported over the core network via a novel mobile label-switching tree (MLST) architecture. End-to-end QoS provisioning over the GPRS wireless mobile network is realized by mapping between the IntServ and GPRS QoS requirements, and by extending the AP-CAC protocol from the wireless medium to the core network to provide a unified end-to-end admission control with dynamic adaptive admission priorities.  相似文献   

8.
As the rapid growth of smart hand-held devices, multihop wireless access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, we present an adaptive per hop differentiation (APHD) scheme towards achieving end-to-end delay assurance in multihop wireless networks. Our scheme is based on EDCA technique which is proposed in 802.11e draft. In EDCA, data packets of different priorities will use different MAC contention parameter set, which translate into different delays. Our APHD scheme extends the capability of EDCA into multihop environment by taking end-to-end delay requirement into consideration at each intermediate hop. Following a cross-layer design approach, APHD is aimed to be a distributed and localized technique. Individual nodes keep track of the channel state independently without any intercommunication overhead. Data packets carry end-to-end delay requirement along with other important information in the packet header. At an intermediate node, based on data packet’s end-to-end requirement, its accumulative delay so far, and the current node’s channel status, APHD smartly adjusts data packet’s priority level in order to satisfy its end-to-end delay requirement. Simulation results show that APHD scheme can provide excellent end-to-end delay assurance while achieving much higher network utilization, compared to a pure EDCA scheme.  相似文献   

9.
文章研究了光无线混合宽带接入网(HOW BAN)后端无源光网络(PON)采用的多点控制协议以及前端无线网状网(WMN)中的各种路由机制,重点研究了几种适用于HOW BAN前端WMN的路由算法:最小跳路由算法、最短路径路由算法、风险和时延感知的路由算法、感知时延路由算法、预测吞吐量路由算法、容量和时延感知的路由算法、能量感知的路由算法、流量限制路由算法、时延区分路由算法。对HOW BAN中的传输协议,文章指出保持服务公平性、保证健壮性、提高服务质量(QoS)、节约能源、保障安全性、适应多频道网络等问题值得深入研究。  相似文献   

10.
An All-Optical Access-Metro Interface for Hybrid WDM/TDM PON Based on OBS   总被引:1,自引:0,他引:1  
A new all-optical access-metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access-metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access-metro interface and architectures  相似文献   

11.
In this paper, we propose a novel passive optical network (PON) architecture that has multiple optical line terminals (OLTs). Unlike existing PONs where all ONUs are connected to a single OLT, the proposed multi-OLT PON allows subscribers to choose their own service providers from among multiple OLTs. Service companies and subscribers can make service level agreements (SLA) on the amount of bandwidth that each OLT or ONU requires. A new control protocol and bandwidth allocation algorithms appropriate in this new PON environments are suggested. For the downstream, a scheme to share the bandwidth among multiple OLTs is studied to maximize the total transmitted packets while guaranteeing each OLT’s SLA. A modified Limited Dynamic Bandwidth Allocation named mLimited scheme is also proposed for upstream transmission toward multiple OLTs, which maximizes the total upstream throughput while minimizing the delay of each ONU. Performances of the proposed PON architecture and algorithms are analyzed. A PON system with two OLTs and 16 ONUs is used in the analysis. Self-similar traffic reflecting current packet distribution is used in the packet generation. The results show that the proposed DBA schemes efficiently manage bandwidth even when the occurred traffic load is quite different from the reserved bandwidth. It is found that the proposed PON architecture is appropriate in supporting diverse services in future high-speed optical access network.  相似文献   

12.
13.
研究了光无线混合接入网中具有抗毁能力的节能路由问题,结合光网络单元(ONU)休眠控制和风险备用路由表维护机制,提出一种有效的可靠绿色路由算法。该算法为每个无线路由器维护一个风险表,以记录网络中路径是否可用以及ONU活跃与否的状态信息,通过鼓励选择ONU活跃的可用路径来传输数据,可降低全网丢包率和能耗。仿真结果表明:该算法能够在稳定丢包率的同时更好地节省能量。  相似文献   

14.
陈前斌  刘剑  酆勇  唐伦 《通信学报》2013,34(9):53-60
针对无线ad hoc网络中协作造成的中继效率低以及不同QoS需求难以满足等问题,提出了一种联合网络编码和空时编码的协作MAC协议(NSTCMAC)。NSTCMAC将网络编码与空时编码技术相结合,设计出区分业务类型的协作MAC协议传输机制,以满足不同业务类型的QoS需求;进一步通过马尔科夫链模型分析了区分业务类型的协作机制及性能。仿真结果表明,相比传统的DCF、COOPMAC以及CD-MAC协议,NSTCMAC协议能更好地保证不同的QoS需求,并能有效地解决协作造成的中继效率低的问题。  相似文献   

15.
边缘云增强光无线融合网络中,存在传统节能机制与卸载业务不匹配的问题。该文提出一种带有负载转移的光网络单元卸载协同休眠机制。通过分析当前光网络单元负载,结合无线域多跳传输时延和目标光网络单元的报告帧发送时刻,进而确定休眠和目的光网络单元完成负载转移。然后光网络单元协同考虑边缘服务器的回传数据到达时刻和无线域控制帧的发送时刻,选取最合适的休眠时长以减少控制开销。仿真结果表明,所提机制在有效降低网络能耗的同时能保证卸载业务的时延性能。  相似文献   

16.
The Ethernet passive optical network is being regarded as the most promising for next-generation optical access solutions in the access networks. In time division multiplexing, passive optical network technology (TDM-PON) and the dynamic bandwidth allocation (DBA) play a crucial key role to achieve efficient bandwidth allocation and fairness among subscribers. Therefore, the traffic prediction in DBA during the waiting time must be put into the account. In this paper, we propose a new prediction approach with an evolutionary algorithm genetic expression programming (GEP) prediction incorporated with Limited IPACT referred as GLI-DBA to tackle the queue variation during waiting times as well as to reduce the high-priority packet delay. Simulation results show that the GEP prediction in DBA can reduce the expedited forwarding (EF) packet delay, shorten the EF queue length, enhance the quality of services and maintain the fairness among the optical network units (ONUs). We conducted and evaluated the detail simulation in two different scenarios with distinctive traffic proportion. Simulation results show that the GLI-DBA has EF packet delay improvement up to 30 % over dynamic bandwidth allocation for multiple of services (DBAM). It also shows that our proposed prediction scheme performs better than the DBAM when the number of ONUs increases.  相似文献   

17.
陈赓  夏玮玮  沈连丰 《通信学报》2014,35(12):78-88
针对异构无线网络融合环境提出了一种基于多门限预留机制的自适应带宽分配算法,从而为多业务提供QoS保证。该算法采用多宿主传输机制,通过预设各个网络中不同业务的带宽分配门限,并基于各个网络中不同业务和用户的带宽分配矩阵,根据业务k支持的传输速率等级需求和网络状态的变化,将自适应带宽分配问题转化为一个动态优化问题并采用迭代方法来求解,在得到各个网络中不同业务和用户优化的带宽分配矩阵的同时,在带宽预留门限和网络容量的约束条件下实现网络实时吞吐量的最大化,以提高整个异构网络带宽的利用效率。数值仿真结果显示,所提算法能够支持满足QoS需求的传输速率等级,减小了新用户接入异构网络的阻塞概率,提高了平均用户接入率并将网络吞吐量最大提高40%。  相似文献   

18.
Passive optical network (PON) has become a preferable access technique for cloud computing due to its elastic bandwidth capacity and transmission stability. In particular, the orthogonal frequency division multiplexing PON based on intensity modulation and direct detection (IM/DD OFDM-PON) has gained extensive attention since it is a cost- and spectral-efficient system, while for the traditional IM/DD OFDM-PON, the use of OFDM could lead to the high peak-to-average power ratio (PAPR), and it is impossible to satisfy the different QoS degrees required by ONUs under a cloud environment. Thus in this paper, we design a novel multi-band discrete Fourier transform (DFT)-spread IM/DD OFDM-PON. The DFT-spread is utilized to reduce the PAPR; meanwhile, a multi-band power allocation and bit loading are achieved to satisfy the different degrees of QoS requirement owned by ONUs. The simulation results show that our system has the better performance of PAPR reduction compared with the traditional IM/DD OFDM-PON; meanwhile, the different QoS degrees of all ONUs are guaranteed.  相似文献   

19.
Dynamic reservation TDMA protocol for wireless ATM networks   总被引:2,自引:0,他引:2  
A dynamic reservation time division multiple access (DR-TDMA) control protocol that extends the capabilities of asynchronous transfer mode (ATM) networks over the wireless channel is proposed in this paper. DR-TDMA combines the advantages of distributed access and centralized control for transporting constant bit rate (CBR), variable bit rate (VBR), and available bit rate (ABR) traffic efficiently over a wireless channel. The contention slots access for reservation requests is governed by the framed pseudo-Bayesian priority (FPBP) Aloha protocol that provides different access priorities to the control packets in order to improve the quality-of-service (QoS) offered to time sensitive connections. DR-TDMA also features a novel integrated resource allocation algorithm that efficiently schedules terminals' reserved access to the wireless ATM channel by considering their requested bandwidth and QoS. Integration of CBR, voice, VBR, data, and control traffic over the wireless ATM channel using the proposed DR-TDMA protocol is considered in this paper. Simulation results are presented to show that the protocol respects the required QoS of each traffic category while providing a highly efficient utilization of approximately 96% for the wireless ATM channel  相似文献   

20.
To fully exploit the upstream bandwidth in Ethernet passive optical networks (EPONs), dynamic bandwidth allocation (DBA) algorithms need to collect the report messages from all the optical network units (ONUs), incurring an idle time comprising the DBA computation time and the round trip time. Some studies have addressed the problem by using the data transmissions of some or all ONUs (ONU-based) to eliminate the idle time. To satisfy the stringent quality of service (QoS) requirements, for example, to improve the packet delay and jitter for delay sensitive applications without degrading QoS support for other types of applications, some studies have proposed to separate the transmission of higher-class and lower-class traffic within one scheduling cycle. Existing studies on the separable scheduling scenario use the class-based concept, that is, use either the higher-class transmission or the lower-class transmission to eliminate the idle time. By contrast, in this paper, an elastic ONU-class-based idle time elimination algorithm (EOCA) is proposed in which the idle time is eliminated using both the higher-class and lower-class transmissions. The proposed mechanism is elastic in the sense that the lower-class transmission is first considered, and then if insufficient lower-class transmissions exist to eliminate the idle time, the OLT pre-allocates the higher-class transmissions in the following cycle to test whether or not the idle time is eliminated. If the idle time is still not eliminated, the OLT reallocates the bandwidth corresponding to the uneliminated idle time to either the last ONU (uneven method) or all of the ONUs (even method) such that the ONU(s) can early transmit any lower-class packets which arrive during the waiting time. Compared to existing class-based or ONU-based idle time elimination algorithms, the proposed EOCA algorithm performs better. The validity of the proposed EOCA algorithm is demonstrated via detailed simulation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号