首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermodynamic phase stabilities of α, β, γ and δ polymorphs of RE2Si2O7 (RE = Yb, Gd), promising candidates for environmental barrier coating systems of gas turbine engines in next generations, were investigated using harmonic and quasi-harmonic lattice dynamics in conjunction with ab initio calculations. By quantifying their Gibbs free energies with dynamics of atoms taken into account, we showed the phase stability of β-Yb2Si2O7 up to melting temperature under an ideal condition, and also under thermal stresses, ensuring the reliability of β-Yb2Si2O7 in environmental barrier coating systems. It was also found that the difference of anharmonic phonons in these polymorphs, which was measured as mode Grüneisen parameters, significantly changed their phonon free energies and invoked the formation of δ-Gd2Si2O7 at high temperature. These results enable a quantitative comprehension of the phase transformation of RE2Si2O7 and future discussions of other factors which may affect the phase stability such as lattice defects.  相似文献   

2.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

3.
A new (Ca,Y)Si4(N,C)7 phase has been characterised lying between the two end-members Y2Si4N6C and CaYSi4N7. This phase is similar to BaYbSi4N7, which is made up of a network of [N(SiN3)4] structural units linked together in a three-dimensional network, with the large cations located in the interstices, but (Ca,Y)Si4(N,C)7 is a disordered variant, with nitrogen atoms partially occupying two sets of equivalent sites related by the combined operations of rotation and tilt. The crystal of (Ca,Y)Si4(N,C)7 used for structure determination contained Ca and Y in the atomic ratio 2:3, the excess positive charge in the cation sites being balanced by the partial replacement of nitrogen by carbon in the central non-metal site of the [N(SiN3)4] unit. Powder diffraction data are listed for Ca0.8Y1.2Si4N6.8C0.2, which is hexagonal with a=5.9874(4), c=9.7849(8) Å at ambient temperature. The crystal structure has been determined from single crystal data; Z=2; S.G. P63mc (no. 186); Rint=0.0274, R1=0.0384, wR2=0.0993 for all data.  相似文献   

4.
NaGd(MO4)2:R (M=W, Mo, R=Eu3+, Sm3+, Bi3+) phosphors were synthesized by solid-state reaction. The structure and photoluminescence properties of the samples were characterized using X-ray powder diffraction and fluorescence spectrophotometry. The 5D07F2 transition of Eu3+, which led to a red emission of the phosphors, was dominantly observed in the photoluminescence spectra. The doped Bi3+ and Sm3+ efficiently sensitized the emission of Eu3+ and effectively extended and strengthened the absorption of near-UV light with wavelengths ranging from 395 to 405 nm. In addition, energy transfers from Bi3+ to Eu3+ and from Sm3+ to Eu3+ occurred. The chromaticity coordinates of the obtained phosphors were close to the standard values of the National Television Standard Committee (x=0.670, y=0.330). The results suggest that NaGd(WO4)2−y(MoO4)y:Eu3+, Sm3+, Bi3+ is an efficient red-emitting phosphor for light-emitting diode applications.  相似文献   

5.
《Ceramics International》2022,48(15):21926-21934
The effect of TiO2 and Ta2O5 co-doping on the phase structure, fracture toughness, and sintering behavior of 10mol%(Y0.4Gd0.3Yb0.3)2O3-stabilized zirconia was investigated using X-ray diffraction, scanning electron microscopy, microindentation, and pressureless sintering. The results showed that 10mol%(Y0.4Gd0.3Yb0.3)2O3–ZrO2 had a single cubic phase structure, and an increase in the Ta2O5 (≥6 mol%) and TiO2 doping concentrations resulted in a simultaneous increase in the content and stability of the tetragonal phase. The fracture toughness of TiO2 and Ta2O5 co-doping 10mol%(Y0.4Gd0.3Yb0.3)2O3–ZrO2 decreased with an increase in the Ta2O5 content. On the other hand, the TiO2 content had no significant effect on the fracture toughness of 10mol%(Y0.4Gd0.3Yb0.3)2O3–ZrO2. The sintering resistance of the specimens increased with an increasing in the Ta2O5 content; however, an increase in the TiO2 content accelerated the densification of the specimens. When the Ta2O5 content was 10 mol% and the TiO2 content was in the range of 4–8 mol%, a single non-transformable tetragonal phase structure with fracture toughness similar to that of 6–8 wt% Y2O3 stabilized ZrO2 and excellent anti-sintering properties could be obtained. This structure can be explored as a thermal barrier coating material for high-temperature applications.  相似文献   

6.
Zirconolite ceramic has been considered as a promising matrix to dispose high-level radioactive waste due to its excellent performance in immobilizing radionuclides. In this work, a series of zirconate solid solutions with stoichiometric Ca1-xLnxZrTi2-xAlxO7 (Ln = La, Nd, Gd, Ho, Yb; x?=?0.1–1) were systematically studied to investigate the radius effect on their phase evolution. Powder X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-Ray spectrometry (SEM-EDX) were used to characterize the products. XRD and SEM results show that complete solid solutions of Ln and Al in zirconolite phase for Ca1-xLnxZrTi2-xAlxO7 cannot found. In the Ca1-xLaxZrTi2-xAlxO7 ceramics, single zirconolite phase cannot form, instead of multiple phases, such as zirconolite-2M, zirconia, perovskite and LaTi2Al9O19. In the Nd-Al co-doping ceramics, nearly single zirconolite-2M and zirconolite-3O were found at x?≤?0.6 and 0.8?≤?x?≤?0.9, respectively. The miscibility gap between zirconolite-2M and 3O was found at x?=?0.7. Single zirconolite-2M formed in the Gd-Al, Ho-Al and Yb-Al co-doped ceramics can only be detected in a compositional range of 0.1?≤?x?≤?0.8. Higher incorporation contents in these three series can form an additional phase cubic zirconia which is usually a ceramic waste form for radionuclides. Based on the XRD data, lattice parameters of zirconolite-2M and zirconolite-3O were calculated by Pawley refinement method. The evolution of lattice parameters of zirconolite-2M shows great difference between different lanthanide ions, indicating different substitution mechanisms in the Ln-Al co-doped zirconolite-2M.  相似文献   

7.
《Ceramics International》2023,49(13):21634-21644
A series of 16 mol% CeO2-2 mol% Re2O3 co-stabilised zirconia (ZrO2) (16Ce4ReSZ, ReEu, Gd, Dy, Y, Er, Yb) ceramic materials were synthesised using a chemical coprecipitation– high-temperature roasting method. Their phase structure, high-temperature phase stability, mechanical properties, thermal conductivity and coefficient of thermal expansion (CTE) were investigated. The results show that the ZrO2 tetragonal phase co-stabilised by CeO2 and Re3+ with a smaller radius has better stability. The 16Ce4ReSZ (ReDy, Y, Er, Yb) materials have high fracture toughnesses, low thermal conductivities, and high CTE values. As the radius of the Re3+ ions decreases, the lattice energy increased, while the lattice distortion decreases, the CTE decreases slightly and the thermal conductivity of the material increases slightly. Owing to the high phase stability of 16Ce4YbSZ, its mechanical properties are best after 100 h of sintering at 1400 °C.  相似文献   

8.
New substitutional, limited solid solution of the formula Y8-yYbyV2O17 where 0 < y ≤ 2.0 was synthesized by the high-temperature reaction in the air from mixtures of α-Y8V2O17 with Yb8V2O17. The new Y8-yYbyV2O17 were characterized by powder XRD, DTA–TGA, IR, UV–vis-DRS and SEM methods. The structure, thermal stability, unit cell volume, band gap energies as well as the position of the IR absorption bands in the spectrum of Y8-yYbyV2O17 were determined. The solid solution was established to have the same structure as β-Y8V2O17 and it was found that with increasing concentration of Yb3+ ions in its crystal lattice the volume of its unit cell decreases along with its energy gap decreasing to 2.4 eV (for y = 2.0), while the IR absorption bands are shifted towards higher wavenumbers. The morphologies of the high temperature polymorph of Y8V2O17 and solid solution were analyzed.  相似文献   

9.
10.
A series of new nitrides and carbonitrides has been identified with crystal structures similar to those of the hexagonal quaternary nitrides of the type (Ba,Sr,Eu)YbSi4N7. The large divalent cations in these structures can be replaced by trivalent cations such as Ln and/or Y, if valency balance is preserved by the simultaneous substitution of carbon for nitrogen in the unique [4]-coordinated anion site. This has been demonstrated by carbon-13 magic-angle spinning NMR spectra which for the yttrium member of this series shows a peak at 36.7 ppm corresponding to carbon atoms occupying the central non-metal atom site in the characteristic [C(NSi3)4] structural unit. The resulting compounds have compositions of the types La2Si4N6C, Y2Si4N6C or (La,Y)2Si4N6C; the crystal structure of a related mixed (Ca,Y) derivative of composition (Ca,Y)2Si4(N,C)7 is reported in Part II of this series. When the two large cations are different, the hexagonal symmetry characteristic of the (Ba,Sr,Eu)YbSi4N7 compounds is maintained; when both cations are the same, lower symmetries are observed. The powder diffraction pattern of La2Si4N6C indexes on an orthorhombic unit cell with a=6.0360(7), b=10.1246(9), c=10.5664(11) Å and the crystal structure has been determined. An alternative way of achieving valency balance without incorporation of carbon is to replace some of the silicon by aluminium; related derivatives of the type M2Si3AlN7, where M=La, Y or mixed La,Y have been prepared and their unit cell dimensions are reported.  相似文献   

11.
With the increased demand for high operating temperature of gas turbine engines, corrosion by molten calcium-magnesium-alumino-silicate (CMAS) exhibits a significant challenge to the development of durable environmental barrier coatings (EBCs). EBC candidates, γ-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 were explored on their corrosion resistance to CMAS melts at 1300 °C and 1500 °C for 50 h. Interaction and degradation mechanisms were investigated and the corrosion behaviors showed different trends at high temperatures. At 1300 °C, RE2Si2O7 dissolves into CMAS melts and apatite phases reprecipitate forming a thick recession layer. However, when the temperature increases to 1500 °C, CMAS melts vigorously penetrate through the grain boundary of RE2Si2O7 and ‘blister’ cracks form throughout the samples. The reduced grain boundary stability at 1500 °C promotes the penetration of CMAS melts in RE2Si2O7. Grain boundary engineering is critically demanded to optimize CMAS corrosion at high temperatures.  相似文献   

12.
《Ceramics International》2017,43(18):16270-16275
Selective emitters for thermophotovoltaic systems consisting of directionally solidified Al2O3-ME3Al5O12 (ME: Y, Er and Yb) eutectic coatings on Al2O3 substrates were produced and characterizated. Coatings were deposited by dip-coating on cylindrical substrates. After sintering, a continuous-wave CO2 laser was used to produce the surface resolidification. The optimization of the processing parameters yielded dense eutectic coatings with good adhesion to the substrate and with 90–200 µm in thickness. All coatings were free of voids and showed a eutectic microstructure consisting of a three dimensional interpenetrated network of Al2O3 and ME3Al5O12. The mechanical properties of the coatings (hardness and fracture toughness) were evaluated by indentation techniques. Thermal emission was studied by heating the rods with a CO2 laser at temperatures between 1000 and 1400 °C. Selective emission was observed in Er3+ and Yb3+ based coatings and attributed to the electronic transitions of the rare earth ions. Er3+-coatings showed the best emission properties as selective emitters for thermophotovoltaic converters.  相似文献   

13.
《Ceramics International》2023,49(16):26397-26410
Inspired by the high entropy effects of high-entropy components, a novel high-entropy rare-earth zirconate (La1/5Gd1/5Y1/5Sm1/5Yb1/5)2Zr2O7 (HEC-LZ) was designed and successfully synthesized in this work. In addition, two binary rare-earth doped zirconates (RE-LZ), (La1/3Sm1/3Yb1/3)2Zr2O7 (LSYZ) and (La1/3Gd1/3Y1/3)2Zr2O7 (LGYZ), were proposed using the same rare-earth elements for comparison. The thermal barrier coatings with LZ-based ceramic top layer were prepared by spray granulation, solid-phase synthesis and atmospheric plasma spraying techniques. The as-synthesized LZ-based ceramics are all dominated by the pyrochlore phase. Under 1000 °C, the thermal cycling performances of the three coatings were studied. The microstructure evolution and crack expansion during the failure process were investigated in detail. The strengthening mechanism and the cause of coating spallation are proposed in combination with mechanical properties and thermal matching analysis. The results showed that compared with the undoped LZ coating, the thermal shock life of LGYZ coating, LSYZ coating and HEC-LZ coating is improved by nearly 46%, 27% and 57%, respectively. Due to the characteristics of high randomness, HEC-LZ ceramic has a large lattice distortion than RE-LZ ceramics, resulting in a higher coefficient of thermal expansion and fracture toughness, which contributes to maintaining the structure stability of coatings under thermal stress.  相似文献   

14.
Sm1-xTbxPO4 solid solutions were synthesized and extensively characterized by powder X-ray diffraction, vibrational spectroscopy, and X-ray absorption spectroscopy. At ambient conditions solid solutions up to x?=?0.75 crystallize in the monazite structure, whereas TbPO4 is isostructural to xenotime. For x?=?0.8 a mixture of both polymorphs was obtained. Moreover, a phase with anhydrite structure was observed coexisting with xenotime, which was formed due to mechanical stress. Selected solid solutions were investigated at pressures up to ~40?GPa using in situ high pressure synchrotron X-ray diffraction and in situ high pressure Raman spectroscopy. SmPO4 and Sm0.5Tb0.5PO4 monazites are (meta)stable up to the highest pressures studied here. TbPO4 xenotime was found to transform into the monazite structure at a pressure of about 10?GPa. The transformation of Sm0.2Tb0.8PO4 xenotime into the monazite polymorph commences already at about 3?GPa. This study describes the reversibility of the pressure-induced (Sm,Tb)PO4 xenotime-monazite transformation.  相似文献   

15.
In this work, Gd3+ was selected to partially substitute the Y3+ in yttrium aluminum garnet (YAG) in order to improve the thermophysical properties of YAG. A series of (Y1-xGdx)3Al5O12 (x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized through chemical co-precipitation route. The microstructure, thermophysical properties and elasticity modulus of (Y1-xGdx)3Al5O12 were investigated. The (Y1-xGdx)3Al5O12 ceramics was comprised of single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xGdx)3Al5O12 bulk samples decreased with increasing doping concentration to 0.2, but increased with furthering increasing the concentration to 0.4. The thermal conductivity of (Y0.8Gd0.2)3Al5O12 was 1.51 W m−1 K−1 at 1200 °C. The average thermal expansion coefficient of (Y0.8Gd0.2)3Al5O12 was slightly larger than that of Y3Al5O12. (Y0.8Gd0.2)3Al5O12 bulk sample exhibited the lowest elasticity modulus among the investigated (Y1-xGdx)3Al5O12. In addition, (Y0.8Gd0.2)3Al5O12 ceramic remained good phase stability from room temperature to 1600 °C.  相似文献   

16.
《Ceramics International》2017,43(9):7153-7158
In this work, Yb3+ was selected to replace the Y3+ in yttrium aluminum garnet (YAG) in order to reduce its thermal conductivity under high temperature. A series of (Y1-xYbx)3Al5O12 (x=0, 0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reaction at 1600 °C for 10 h. The microstructure, thermophysical properties and phase stability under high temperature were investigated. The results showed that all the Yb doped (Y1-xYbx)3Al5O12 ceramics were comprised of a single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xYbx)3Al5O12 ceramics firstly decreased and subsequently increased with Yb ions concentration rising from room temperature to 1200 °C. (Y0.7Yb0.3)3Al5O12 had the lowest thermal conductivity among investigated specimens, which was about 1.62 W m−1 K−1 at 1000 °C, around 30% lower than that of pure YAG (2.3 W m−1 K−1, 1000 °C). Yb had almost no effect on the coefficients of thermal expansion (CTEs) of (Y1-xYbx)3Al5O12 ceramics and the CTE was approximate 10.7×10−6 K−1 at 1200 °C. In addition, (Y0.7Yb0.3)3Al5O12 ceramic remained good phase stability when heating from room temperature to 1450 °C.  相似文献   

17.
《Ceramics International》2020,46(12):20243-20250
In this work, the BaAl2O4: Eu2+, Eu2+/L3+ (L= Dy, Er, Sm, Gd, Nd, and Pr) phosphors were synthesized via a facile solid-state reaction method using LiCl as a flux material at 1100 °C. The structural properties, microstructure, adsorption and photoluminescence characteristics of products were evaluated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Uv–vis adsorption and photoluminescence (PL) analyses. The observation of XRD patterns showed that even 10% LiCl is not able to produce any impurity phase in BaAl2O4: Eu2+ crystal structure, although the microstructure morphology is considerably affected. The particle size of BaAl2O4: Eu2+ phosphors was about 220 nm while the use of LiCl flux resulted in a remarkable decrease of this parameter to about 120 nm. Furthermore, the PL patterns disclosed that Eu2+ ions have occupied one type of Ba2+ sites while larger quantities of lanthanides (L3+) occupied the second type of Ba2+ sites. The strongest photoluminescence emission intensity at the wavelength of 495 nm was achieved when 5 wt% LiCl was added to BaAl2O4: Eu2+. Also, the absorption analysis revealed that the addition of flux enriches the adsorption of Congo red (CR) dye on the phosphor powders. The use of 5 wt% flux material led to noticeable improvement of CR adsorption capacity from 38.53 to 48.3 mg g−1.  相似文献   

18.
Tailoring glass compositions can raise the viscosity of SiREAl oxynitride glasses. In the present study, viscosity data are obtained by determining the compressive creep response of bulk glasses in air. The findings reveal that increasing both the nitrogen-to-oxygen and the yttrium-to-aluminum ratios of the glasses shifts the glass viscosity to higher temperatures. In addition, the substitution of progressively smaller rare earths in the glass composition results in a further increase in the glass viscosity. These effects have important implications in the creep resistance of silicon nitride ceramics where the amorphous intergranular films are a major factor in creep resistance.  相似文献   

19.
《Ceramics International》2022,48(16):23397-23403
Searching for new oxides with low thermal conductivity and high thermal expansion coefficients (TECs) as thermal barrier coatings (TBCs) is vital for the development of highly efficient gas turbines and aeroengines. We report the densification sintering, high TECs, and low thermal conductivity of A4Ta2O9 (A = Ca, Mg) tantalates. The best sintering temperature of dense A4Ta2O9 ceramics was determined via an optical contact angle tester, and samples with a relative density of 99.8% were synthesized via spark plasma sintering (SPS). The hardness (9–10 GPa), Young's modulus (172.7–211.8 GPa) and fracture toughness (1.5–1.6 MPa m1/2) of the A4Ta2O9 ceramics are primarily affected by the bonding strength. Furthermore, we studied the thermal transport properties of A4Ta2O9. The low thermal conductivity (1.78–1.93 W m?1 K?1 at 900 °C), extraordinary phase stability, and high TECs (11.4–11.8 × 10?6 K?1 at 1200 °C) of A4Ta2O9 ceramics make them candidate TBCs with high operating temperatures.  相似文献   

20.
《Ceramics International》2017,43(14):11116-11122
Experimental phase equilibrium data for the Cu-O-Al2O3-MgO system is required to improve the performance of MgAl2O4-containing refractories and slagging in non-ferrous smelting. In this work, the phase relations of MgAl2O4 in the Cu-O-Al2O3-MgO system were studied experimentally in air within a temperature range of 1100–1400 °C using the equilibration and quenching method. The chemical compositions of the phases in the quenched samples were determined using electron probe microanalysis (EPMA). Less than 1 wt% of Al2O3 or MgO were found in the oxide liquid phase, whereas the solid MgAl2O4 and MgO phases contained up to 23 wt% and 30 wt% of ‘Cu2O’, respectively. Discrepancies between these results and the corresponding calculated values generated by the MTDATA 6.0 software and Mtox database Version 8.2 ranged from 3 wt% to 19 wt%. The results of this work indicate that the MgAl2O4 spinel is chemically stable in the presence of a CuOx-rich liquid under the conditions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号