首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BaAl2?2x(ZnSi)xSi2O8 (x = 0.2–1.0) ceramics were prepared using the conventional solid-state reaction method. The sintering behaviour, phase composition and microwave dielectric properties of the prepared compositions were then investigated. All compositions showed a single phase except for x = 0.8. By substituting (Zn0.5Si0.5)3+ for Al3+ ions, the optimal sintering temperatures of the compositions decreased from 1475 °C (x = 0) to 1000 °C (x = 0.8), which then slightly increased to 1100 °C (x = 1.0). Moreover, the phase stability of BaAl2Si2O8 was improved. A novel BaZnSi3O8 microwave dielectric ceramic was obtained at the sintering temperature of 1100 °C. This ceramic possesses good microwave dielectric properties with εr = 6.60, Q × f = 52401 GHz (at 15.4 GHz) and τf = ?24.5 ppm/°C.  相似文献   

2.
《Ceramics International》2016,42(9):10801-10807
The Ba1−xSrxMg2V2O8 (0≤x≤0.4) microwave dielectric ceramics were fabricated by a standard solid-state reaction method. The formation of a continuous solid solution within the whole composition range was identified. The ceramic samples could be well densified in the temperature range of 885–975 °C in air for 4 h. The permittivity εr was found to increase with increasing ionic polarizabilities. The Q×f values were believed to be closely related with packing fraction and grain refinement. The Sr2+ substitution contributed to a monotonous increase of the A-site bond valence, such that the τf value experienced a considerable variation from negative to positive values. The optimum microwave dielectric properties of an εr of 13.3, a high Qxf of 86,640 GHz (9.6 Hz) and a near-zero τf of −6 ppm/°C could be yielded in the x=0.15 sample when sintered at 915 °C for 4 h.  相似文献   

3.
BaAl2?2xNi2xSi2O8?x (x = 0, 0.005, 0.01, 0.02, 0.03) ceramics were prepared using traditional solid phase reaction method. The microwave dielectric properties, including permittivity (εr), quality factor (Q × f), and temperature coefficient of resonant frequency (τf), were discussed based on the bond valence theory. The first-principle calculation was adopted to determine the site (Ba, Al, and Si) where doping element (Ni2+) would be inclined to occupy. The substitution of Ni2+ for Al3+ contributed to the breaking of Al-O and Si-O bonds and then facilitated the BaAl2Si2O8 (BAS) hexacelsian-celsian transformation. Moreover, this substitution could change the bond strength between cation and oxygen anion due to the variation of the bond valence, which reasonably explained the variation of εr, Q × f, and τf values. Well-sintered and completely transformed celsian ceramics can be obtained after doping with Ni2+. When x = 0.01, compact BaAl1.98Ni0.02Si2O7.99 ceramic exhibited highly promising microwave dielectric properties: εr = 6.89, Q × f = 53, 287 GHz and τf = -25.31 × 10?6 /°C.  相似文献   

4.
The crystal structure and microwave dielectric properties of Zn0.9Ti0.8?xSnxNb2.2O8 (x = 0.00, 0.05, 0.10, 0.15) ceramics sintered at temperatures ranging from 1100 °C to 1140 °C for 6 h were investigated. A single phase with ixiolite structure was obtained. With the increase of Sn content, the dielectric constant decreased attributed to the decrease of dielectric polarizability. The Qf value decreased with the decrease of packing fraction and grain size. The temperature coefficient of resonant frequency (τf) increased due to the increase of the bond valence of Zn0.9Ti0.8?xSnxNb2.2O8 ceramics. The excellent microwave dielectric properties of ? = 35.05, Qf = 49,100 GHz, τf = ?27.6 × 10?6/°C were obtained for Zn0.9Ti0.8?xSnxNb2.2O8 (x = 0.05) specimens sintered at 1120 °C for 6 h.  相似文献   

5.
The solid solution system Nd2?xCexTi2O7 has been investigated. The solubility limit of Ce in Nd2?xCexTi2O7 was found to be 0·5–0·75 according to X-ray diffraction and X-ray photoelectron spectroscopy results. Ce substitution increases the b and c axes and the volume of the unit cell due to its larger ionic radius. Nd2?xCexTi2O7 (x?=?0·05, 0·25, 0·5, 0·75) textured ceramics were fabricated using spark plasma sintering. The ferroelectric and dielectric properties of the ceramics were studied. Ce substitution decreases the Curie point Tc of Nd2?xCexTi2O7 compounds. The results suggest that the Tc of Ce2Ti2O7 is <1445°C.  相似文献   

6.
(CoxZn1–x)TiNb2O8 (x = 0.2–0.8) microwave dielectric ceramics were synthesized via the conventional solid-state reaction route, and the correlation of microwave dielectric properties on the crystal structure was discussed. Crystal structures of ceramic samples were systematically investigated by X-ray powder diffraction. Moreover, composition-induced phase transitions were confirmed via the following sequence: for x ≤ 0.2, single-phase orthorhombic ixiolite (ZnTiNb2O8) was formed, whereas for 0.3 ≤ x<0.8, ixiolite and rutile coexisted. When x ≥ 0.8, only single-phase rutile was detected. For the (CoxZn1–x)TiNb2O8 ceramics, the microwave dielectric properties were changed with the crystal structural transitions: the dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) increased upon increasing the Co2+, but the quality factor (Q) decreased. A near-zero τf = +1.6 ppm/°C was obtained in the Co0.38Zn0.62TiNb2O8 ceramics with εr = 40.7 and high Q × f = 16 790 GHz. These research outcomes are expected to have great significance for developing microwave dielectric ceramics in practical applications.  相似文献   

7.
Single phase MgNb2O6 and ZnTa2O6 powders were synthesized by solid-state method, and the high quality factor composite ceramics of (1?x)ZnTa2O6?xMgNb2O6 (x=0, 0.05, 0.10, 0.15, 0.20, 0.25 and 1.0) were prepared using the as-synthesized powders. The microwave dielectric properties, microstructure, phase transition and sintering behavior of the composite ceramics were investigated. The X-ray diffraction analysis revealed that solid solution between ZnTa2O6 and MgNb2O6 phases appeared in the composite ceramic. SEM results show that the grain sizes of the composite ceramics increased with increasing x values. The temperature coefficient of resonant frequency of (1?x)ZnTa2O6?xMgNb2O6 composite ceramics reaches near-zero of 1.02 ppm/°C with εr=35.58 and a high quality factor of 65500 GHz when x=0.20 and sintered at 1350 °C for 2 h.  相似文献   

8.
Microwave dielectric ceramics with intrinsic low sintering temperatures are potential candidates for low temperature co-fired ceramics technology. In the present work, the (Li0.5Y0.5)MoO4 ceramic with tetragonal scheelite structures was selected to improve microwave dielectric properties of BiVO4 ceramics. As proved by X-ray diffraction (XRD) results, scheelite structured solid-solution ceramics were formed with x value ≤0.1 in the (Bi1−xLi0.5xY0.5x)(V1−xMox)O4. In situ XRD results further confirmed that the addition of (Li0.5Y0.5)MoO4 also lowered transition temperature from distorted monoclinic to tetragonal scheelite structure. When x value increased further, zircon phase was detected by XRD. Room and high-temperature Raman spectra also supported the XRD results. Differences of thermal expansion coefficients of both monoclinic and tetragonal scheelite phases lead to an abnormality at phase transition temperature. Good microwave dielectric properties with permittivity above 70 and Qf (Q = quality factor = 1/dielectric loss and f = frequency) value above 8000 GHz were obtained in the (Bi1−xLi0.5xY0.5x)(V1−xMox)O4 solid-solution ceramics with x value ≤0.1 sintered below 800°C. However, permittivity peak values at phase transition temperatures lead to large positive or negative temperature coefficient of resonant frequency, and this needs to be modified via composite technologies in the future.  相似文献   

9.
In this work, the Mg2-xCuxSiO4(x = 0–0.40) microwave dielectric ceramics were prepared using solid-state reaction method. Compared with the Mg2SiO4 sample, the Cu-substituted Mg samples could be sintered at a lower temperature. The Mg2?xCuxSiO4 ceramics exhibit the composite phases of Mg2SiO4 and a small quantity of MgSiO3. The Cu2+ ion presented a solid solution with the Mg2SiO4 phase and preferentially occupy Mg(1) site. The distortion of MgO6 octahedron was modified by Cu2+ ions, resulting in a positive change in the temperature coefficient of resonance frequency (τf) values. Excellent microwave dielectric properties of εr = 6.35, high Qf of  188,500 GHz and near zero τf = ?2.0 ppm/°C were achieved at x = 0.08 under sintering at 1250 °C for 4 h. Thus, the fabricated ceramics were considered as possible candidates for millimeter-wave device applications.  相似文献   

10.
《Ceramics International》2017,43(11):8534-8537
Ca0.6La0.8/3(SnxTi1−x)O3 ceramics were prepared via a conventional solid state reaction method, and the effect of Sn doping on their crystal phase structure and microwave dielectric properties was investigated. Results showed that Sn doping could hinder the formation of the rutile TiO2 detrimental phase of Ca0.6La0.8/3TiO3 ceramic. Also, the Q×f0 value was enhanced and the τf value was lowered by Sn doping. The best microwave dielectric properties, i. e. εr=113 and Q×f0=8487 GHz were obtained for a Sn doping content of 0.02. The mechanism of the improved properties deriving by Sn doping is discussed.  相似文献   

11.
X-ray diffractometer with Rietveld refinement and Raman spectroscopy were used for phase analysis. Ca doping results in decreased εr (24.09–21.52), Q × f (68 914–40 110 GHz), and τf (−50.0 ppm/°C to −60.2 ppm/°C) all decrease, which obviously does not conform to the mutual constraint relationship among the three parameters of microwave dielectric properties. The εr of Ce1−xCaxO2−x ceramics is affected by the ion polarizability and the Ce rattling and valence states, among which the rattling of Ce cations plays a dominant role. The presence of oxygen vacancies in Ce1−xCaxO2−x ceramics explains the decrease in Q × f. The τε, εr, and αL are responsible for the decrease in τf, especially for the ταm-3αL values.  相似文献   

12.
In order to improve the microwave dielectric properties of Ba6−3xNd8+2xTi18O54 solid solution ceramics, the effects of Bi2O3 and Bi4Ti3O12 additives were determined. The results of SEM and EDS analyses suggested that the present ceramics with Bi4Ti3O12 additives consisted of Ba6−3xNd8+2xTi18O54 solid solution matrix phase, and secondary phase of BaTi4O9, but this was not the situation of Bi2O3 added ceramics. XRD analysis also revealed that the unit cell volume of the matrix phase increased with increasing the amount of Bi4Ti3O12 additive. With addition of Bi4Ti3O12 into the present ceramics, the dielectric constant increased and the temperature coefficient of resonator frequency decreased, while the Qf value slightly decreased. The excellent microwave dielectric characteristics (ε=94·9, Qf=5620 GHz, τf=21·4 ppm/°C could be achieved in the present ceramics through the microstructure control.  相似文献   

13.
Lead-free CaxBa1?xNb2O6 (CBN, 0.20≤x≤0.35) ceramics were prepared by the conventional solid state method. Effects of Ca content on the phase formation, microstructure, dielectric and ferroelectric properties for the prepared CBN ceramics were systematically studied. XRD results showed that pure CBN phase with tungsten bronze structure could be obtained from the solid solutions of BaNb2O6 and CaNb2O6 in all ceramics. Higher Ca contents favored the occurrence of grains with anisometric morphology, but no abnormal grain growth could be found in all compositions. With the increase of x, Curie temperature Tc shifted downward, whereas the maximum dielectric constant εm increased initially and then decreased. All the ceramics showed an intermediate relaxor-like behavior between normal and ideal relaxor ferroelectrics according to the modified Curie–Weiss law. Normal ferroelectric hysteresis loops were observed in all compositions. Both remnant polarization Pr and coercive field Ec increased initially and then decreased with the increase of x. The ceramics with homogeneous microstructure, high density and better properties were obtained at x=0.28 with εm=2998, Tc=234 °C, Pr=3.98 μC cm?2 and Ec=14.03 kV cm?1.  相似文献   

14.
LiGa5O8 ceramics with inverse spinel structure were prepared in a temperature range of 1200–1300 ℃ by solid-state reaction method. LiGa5O8 ceramics crystallized in cubic structure with space group P4332, in which Li+ and Ga3+ distributed in the octahedral B sites with 1:3 ordering. The optimal microwave dielectric properties with εr =10.51, Q × f = 127,040 GHz, and τf = –60.16 ppm/℃ were achieved at 1260 ℃ for 6 h. Microwave dielectric properties were discussed in combination with the intrinsic characteristics of crystal structure by packing fraction, Raman spectra, and infrared reflectivity spectrum. Additionally, CaTiO3 was used to suppress τf of LiGa5O8 ceramics to near zero, and optimized performances of εr = 12.79, Q × f = 109,752 GHz and τf = +4.07 ppm/℃ were obtained for 0.94LiGa5O8‐0.06CaTiO3 ceramics at 1260 ℃. These bright spots make LiGa5O8 ceramic a potential candidate for 5 G and millimeter wave technology.  相似文献   

15.
High dielectric constant and low loss ceramics in the Ba8Ti3Nb4?xSbxO24 (x=0–2) system were prepared by conventional solid-state ceramic route. As x increased from 0 to 1.5, a single phase with hexagonal 8H perovskite structure was formed and the band gap values increased from 3.38 to 3.47 eV. However, the Sb2O3 secondary phase was detected as the x reached 2. The optimum sintering temperature was reduced from 1460 to 1380 °C, the quality factors (Q×f) were effectively enhanced from 22,900 to 38,000 GHz and τf was significantly lowered from 110 ppm/°C to 2 ppm/°C, whereas the dielectric constant decreased from 49 to 35. A good combined microwave dielectric properties with εr=37.5, Q×f=38,000 GHz, τf=15 ppm/°C were obtained for x=1.5.  相似文献   

16.
Li2Ti1?x(Zn1/3Nb2/3)xO3 (0≤x≤0.5) ceramics were prepared by a solid state ceramic route, and the phase purity, microstructure, and microwave dielectric properties were investigated. The XRD results suggest the formation of solid solutions for all studied compositions (0≤x≤5). The dielectric properties are strongly dependent on the compositions, the densifications and the microstructures of the samples. The Q×f value increases with x up to x=0.2 and then decreases with the further increase of x. The best microwave dielectric properties of εr=20.5, Q×f =75,257 GHz, and τf =15.4 ppm/°C could be obtained when x=0.2.  相似文献   

17.
Trirutile-structure MgTa2O6 ceramics were prepared by aqueous sol–gel method and microwave dielectric properties were investigated. Highly reactive nanosized MgTa2O6 powders were successfully synthesized at 500 °C in oxygen atmosphere with particle sizes of 20–40 nm. The evolution of phase formation was detected by DTA–TG and XRD. Sintering characteristic and microwave dielectric properties of MgTa2O6 ceramics were studied at different temperatures ranging from 1100 to 1300 °C. With the increase of sintering temperature, density, ?r and Q · f values increased and saturated at 1200 °C with excellent microwave properties of ?r  30.1, Q · f  57,300 GHz and τf  29 ppm/°C. The sintering temperature of MgTa2O6 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state method.  相似文献   

18.
Herein, the improvement of the microwave dielectric properties and sintering characteristics of Zn1?xBixVxW1?xO4(x = 0–0.15)-based ceramics is reported. The results showed that an appropriate amount of doping could not only reduce the optimum sintering temperature from 1100° to 900°C, but also enhance the densification of the microstructures and increase the Q×f value from 5351 to 42525 GHz. Additionally, various structural parameters including the phase composition, crystal structure, vibrational and chemical bond characteristics that are correlated with the dielectric properties were systematically investigated. By considering the chemical bond characteristics, the first-principles calculations and the acquired Raman spectra, the interaction between W-O is stronger than Zn-O in the ZnWO4 structure, while the interaction between V-O is stronger than Bi-O in BiVO4. Interestingly, when the Zn0.97Bi0.03V0.03W0.97O4-based ceramics were sintered at 900 °C, improved microwave dielectric properties were acquired (εr =18.32, Q×f=42525 GHz, τf=?67.51 ppm/°C), which provides a promising candidate in low-temperature co-fired ceramics technology.  相似文献   

19.
Sr2[Ti1−x(Al0.5Nb0.5)x]O4 (x = 0, 0.10, 0.25, 0.30, 0.5) ceramics were synthesized by a standard solid-state reaction process. Sr2[Ti1−x(Al0.5Nb0.5)x]O4 solid solutions with tetragonal Ruddlesdon-Popper (R-P) structure in space group I4/mmm were obtained within x ≤ 0.50, and only minor amount (1-2 wt%) of Sr3Ti2O7 secondary phase was detected for the compositions x ≥ 0.25. The temperature coefficient of resonant frequency τf of Sr2[Ti1−x(Al0.5Nb0.5)x]O4 ceramics was significantly improved from 132 to 14 ppm/°C correlated with the increase in degree of covalency (%) with increasing x. The dielectric constant ɛr decreased linearly with increasing x, while high Qf value was maintained though it decreased firstly. The variation tendency of Qf value was dependent on the trend of packing fraction combined with the microstructure. Good combination of microwave dielectric properties was achieved for x = 0.50: ɛr = 25.1, Qf = 77 580 GHz, τf = 14 ppm/°C. The present ceramics could be expected as new candidates of ultra-high Q microwave dielectric materials without noble element such as Ta.  相似文献   

20.
Low-permittivity Ca1−xSrxSnSiO5 (0 ≤ x ≤ 0.45) microwave dielectric ceramics were prepared via traditional state-reaction at 1400°C-1450°C for 5 hours. Moreover the microwave dielectric properties of SnO2 ceramic were obtained for the first time. SnO2 ceramic was difficult to densify, and SnO2 ceramic (ρrel = 65.1%) that was sintered at 1525°C exhibited the optimal microwave dielectric properties of εr = 5.27, Q × f = 89 300 GHz (at 14.5 GHz), and τf = −26.7 ppm/°C. For Ca1−xSrxSnSiO5 (0 ≤ x ≤ 0.15) ceramics, Sr2+ could be dissolved in the Ca2+ site of Ca1−xSrxSnSiO5 to form a single phase, and the partial substitution of Ca2+ by Sr2+ could improve the microwave dielectric properties of CaSnSiO5 ceramic. Secondary phases (SnO2 and SrSiO3) appeared at 0.2 ≤ x ≤ 0.45 and could adjust the abnormally positive τf value of CaSnSiO5 ceramic. The highest Q × f value (60 100 GHz at 10.4 GHz) and optimal microwave dielectric properties (εr = 9.42, Q × f = 47 500 GHz at 12.4 GHz, and τf = −1.2 ppm/°C) of Ca1−xSrxSnSiO5 ceramics were obtained at x = 0.05 and 0.45, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号