首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two series of C/C–SiC composites were fabricated via precursor infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) using porous C/C composites with different original densities as preforms, respectively. The tribological characteristics of C/C–SiC braking composites were investigated by means of MM-1000 type of friction testing machine. The friction and wear behaviors of the two series of composites were compared and the factors that influence the friction and wear properties of C/C–SiC composites were discussed. Results show that the friction and wear properties relate close-knit to the content of SiC and porosity. As the original preform density increasing, the content of SiC and porosity decrease, and then the friction coefficient increases obviously, the braking time and the wear rate both decrease. Preparation techniques play an important role in the tribological properties of C/C–SiC composites. Compared with PIP process, the samples from CVI have a little higher friction coefficient, shorter braking time and higher wear rate.  相似文献   

2.
Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been considered as candidates for heat resistant and nuclear materials. Three-dimensional (3D) SiC/SiC composites were fabricated by the polymer impregnation and pyrolysis (PIP) method with a consolidation process, mechanical properties of the composites were found to be significantly improved by the consolidation process. The SiC/SiC composites were then heat treated at 1400 °C, 1600 °C and 1800 °C in an inert atmosphere for 1 h, respectively. The effect of heat treatment temperature on the mechanical properties of the composites was investigated, the mechanical properties of the SiC/SiC composites were improved after heat treatment at 1400 °C, and conversely decreased with increased heat treatment temperature. Furthermore, the effect of heat treatment duration on the properties of the SiC/SiC composites was studied, the composites exhibited excellent thermal stability after heat treatment at 1400 °C within 3 h.  相似文献   

3.
C/C–ZrC–SiC composites with continuous ZrC–SiC ceramic matrix were prepared by a multistep technique of precursor infiltration and pyrolysis process. Ablation properties of the composites were tested under an oxyacetylene flame at 3000 °C for 120 s. The results show that the linear ablation rate of the composites was about an order lower than that of pure C/C and C/C–SiC composites as comparisons, and the mass of the C/C–ZrC–SiC composites increased after ablation. Three concentric ring regions with different coatings appeared on the surface of the ablated C/C–ZrC–SiC composites: (i) brim ablation region covered by a coating with layered structure including SiO2 outer layer and ZrO2–SiO2 inner layer; (ii) transition ablation region, and (iii) center ablation region with molten ZrO2 coating. Presence of these coatings which acted as an effective oxygen and heat barrier is the reason for the great ablation resistance of the composites.  相似文献   

4.
This study investigated the effect of short carbon fiber (Cf) on the oxidation behavior of ZrB2–SiC composites with fiber volume fractions in the range of 0–20%. Precisely, highly dense composite compacts were manufactured by hot-press process at 2000 °C and 30 MPa for 60min. The addition of Cf increased the relative density of sintered composite The oxidation treatment at 1600 °C in air tube furnace for 0.5 h revealed that oxidation rate of ZrB2–SiC-Cf composites decreased from 292.4 μm/h to 77.6 μm/h (almost 73.5% decline), when the content of Cf changed from 0 to 20%. Moreover, Cf played important roles in blocking and deflecting oxygen diffusion during the oxidation process, which provided a local reduction environment of oxidation products.  相似文献   

5.
Environmentally friendly commercial applications spurred us to screen a suitable ablative throat material for the hybrid rocket, while preserving its cost-effective advantages as a special chemical motor. In this research, two types of carbon fiber reinforced composites, i.e. carbon/carbon (C/C) composite and Cf/C–SiC–ZrC composite utilized in high temperature environment, were employed to make the hybrid rocket nozzle. By comparison with the high-density graphite, the anti-ablation properties under the firing environment of Ф100mm H2O2-polyethylene hybrid rocket motor were characterized. We used whole felt preform to make C/C composite, whose matrix carbon was coming from chemical vapor infiltration of propylene; and the Cf/C–SiC–ZrC composite, which employs the same whole felt preform to make the low-density C/C billet, by infiltrated with Si and Zr organic precursors and pyrolysis at elevated temperatures repeatedly to make the advanced ceramic matrix composite. The firing test lasted 40s for all the candidate materials and the result indicated that the Cf/C–SiC–ZrC composite, whose average linear ablation rate was only 0.003 mm/s, was the most stable one in the firing environment. The SEM images gave detailed morphologies of those nozzle throat materials and proved that the fiber architecture, together with the glassy ceramic oxide, helped the nozzle to withstand the hybrid motor firing environment.  相似文献   

6.
《Ceramics International》2022,48(15):21283-21292
Cf/C–SiC composites were fabricated via liquid silicon infiltration with 2.5D needle-punched carbon fiber reinforced Cf/C composites. The effect of surface topography and carbon content of the Cf/C–SiC composites on the tribological properties was researched by the ball-on-disk reciprocating tribometer. The results indicate that different fiber layers and cross-section of the composites have various surface topography and show significant differences in the friction and wear properties. By the wear morphology and model analyses, the reason for the tribological anisotropy of the composites is that the distribution of carbon and SiC phases in the composites are inhomogeneous caused by the difference of the carbon fiber orientation and the relative content in each layer. Moreover, the wear rate of the short-cut fiber web layer was the lowest and there is an obvious linear decrease in coefficient of friction with increase of carbon content. The present work explains why the tribological properties of the composites are inconsistent and provides a way to adjust the friction properties of composite materials by optimizing the friction surface.  相似文献   

7.
Twill multidirectional carbon-fiber-reinforced carbon and silicon carbide composites (i.e., C/C–SiC) were prepared via chemical vapor infiltration combined with reactive melt infiltration process. The effect of heat treatment (HT) on the microstructure and mechanical properties of C/C–SiC composites obtained by C/C preforms with different densities was thoroughly investigated. The results show that as the bulk density of C/C preforms increases, the thickness of the pyrolytic carbon (PyC) layer increases and open pore size distribution narrows, making the bulk density and residual silicon content of C/C–SiC composites decrease. Moreover, the flexural strength and tensile strength of the C/C–SiC composites were improved, which can be attributed to the increased thickness of the PyC layer. The compressive strength reduces due to the decrease of the ceramic phase content. HT improves the graphitization degree of PyC, which reduces the silicon–carbon reaction rate and thereby the content of the SiC phase. HT induces microcracks and porosity but not obviously affects the mechanical properties of C/C–SiC composites. However, the negative impact of HT can be compensated by the increased density of the C/C preforms.  相似文献   

8.
C/C–SiC composites were prepared by molten infiltration of silicon powders, using porous C/C composites as frameworks. The porosities of the C/C–SiC composites were about 0.89–2.8 vol%, which is denser than traditional C/C composites. The ablation properties were tested using an oxyacetylene torch. Three annular regions were present on the ablation surface. With increasing pyrocarbon fraction, a white ceramic oxide layer formed from the boundary to the center of the surface. The ablation experimental results also showed that the linear and mass ablation rates of the composites decreased with increasing carbon fraction. Linear SiO2 whiskers of diameter 800 nm and length approximately 3 μm were formed near the boundaries of the ablation surfaces of the C/C–SiC composites produced with low-porosity C/C frameworks. The ablation mechanism of the C/C–SiC composites is discussed, based on a heterogeneous ablation reaction model and a supersaturation assumption.  相似文献   

9.
The influence of high-temperature argon heat-treatment on the microstructure and room- temperature in-plane tensile properties of 2D woven CVI and 2D unidirectional MI SiC/SiC composites with Hi-Nicalon?-S SiC fibers was investigated. The 2D woven CVI SiC/SiC composites were heat-treated between 1200 and 1600 °C for 1- and 100-hr, and the 2D unidirectional MI SiC/SiC composites between 1315 and 1400 °C for up to 2000 hr. In addition, the influence of temperature on fast fracture tensile strengths of these composites was also measured in air. Both composites exhibited different degradation behaviors. In 2D woven CVI SiC/SiC composites, the CVI BN interface coating reacted with Hi-Nicalon?-S SiC fibers causing a loss in fast fracture ultimate tensile strengths between 1200 and 1600 °C as well as after 100-hr isothermal heat treatment at temperatures > 1100 °C. In contrast, 2D unidirectional MI SiC/SiC composites showed no significant loss in in-plane tensile properties after the fast fracture tensile tests at 1315 °C. However, after isothermal exposure conditions from 1315° to 1400°C, the in-plane proportional limit stress decreased, and the ultimate tensile fracture strain increased with an increase in exposure time. The mechanisms of strength degradation in both composites are discussed.  相似文献   

10.
The microstructure and mechanical properties of CVI-Cansas-III/PyC/SiC composites were systematically investigated after heat treatment under high temperature argon atmosphere, ranging from 1000 °C to 1500 °C, for different time durations. The results showed that the Cansas-III fibres degraded with increasing heat treatment temperature, resulting in degradation of the fibre properties due to pyrolysis of the SiOC phase inside the fibres. The bending strength of the composites remained nearly constant upon heat treatment at 1000 °C and 1250 °C, while a decline in bending strength was observed upon increasing the heat treatment temperature and time, specifically at 1350 °C and above. Moreover, the composites maintained their pseudo-plastic fracture behaviour below 1450 °C, while displaying brittle fracture of the ceramic after 100 h of heat treatment at 1500 °C, due to the complete crystallisation of the fibres.  相似文献   

11.
Chemical-vapor-infiltrated (CVI) SiC/SiC composites with Sylramic?-iBN SiC fibers and CVI carbon, BN, and a combination of BN/C interface coating were heat treated in 0.1-MPa argon or 6.9-MPa N2 at temperatures to 1800 °C for exposure times up to 100 hr. The effects of thermal treatment on constituent microstructures, in-plane tensile properties, in-plane and through-the-thickness thermal conductivities, and creep behavior of the composites were investigated. Results indicate that heat treatment affected stoichiometry of the CVI SiC matrix and interface coating microstructure, depending on the interface coating composition and heat treatment conditions. Heat treatment of the composites with CVI BN interface in argon caused some degradation of in-plane properties due to the decrease in interface shear strength, but it improved creep resistance significantly. In-plane tensile property loss in the composites can be avoided by modifying the interface composition and heat treatment conditions.  相似文献   

12.
《Ceramics International》2021,47(22):31251-31258
A modification of the precursor infiltration pyrolysis (PIP) method was explored to prepare the integrated doped ceramic matrix and coating by the added SiC nanowires layer and shape-stabilization process. The epitaxial layer of SiC nanowires provided surficial attachments for the precursor. And the shape-stabilization process aggregated loose ceramic particles into a coating. Then the SiC nanowire-reinforced ZrC–SiC coating-matrix integrated C/C (S/SZ-CZ/C) composite was simply prepared by the modified PIP method. The bonding strength between the coating and matrix of the S/SZ-CZ/C composite was improved. Through the ablation test, the mass and linear ablation rate of the S/SZ-CZ/C composite were 0.46 mg/s and 0.67 μm/s, which were 60.34 % and 74.91 % lower than those of the SiC nanowire-reinforced C/C–ZrC (S/CZ/C) composite, respectively. The integration of the coating and matrix enabled the formation of a continuous oxide layer of molten SiO2 and ZrO2 in the ablation process, which helped to block the oxygen and heat during the ablation test. Thus the ablation resistance of the materials was systematically and effectively improved.  相似文献   

13.
《Ceramics International》2023,49(4):6262-6269
This article focuses on the damage behavior and mechanism of aluminum addition on reactive melt infiltrated C/C–SiC composites in single and cyclic ablation environments. Plasma ablation tests were performed on C/C–SiC composites containing 20 wt % and 40 wt % aluminum respectively. Coupled with TMA, XRD, SEM and EDS, the results showed that composites with 40 wt % Al had better ablation resistance during the cyclic ablation, while the composites with 20 wt % Al had excellent ablation damage resistance during a single ablation. This difference was due to higher number of microcracks formed inside the composites containing 40 wt % Al than 20 wt % Al, the lower specimen surface temperature during ablation, and the thermal stresses can be released by pore crack expansion during gas reciprocal loading. While in the single continuous loading of gas, the 20 wt % Al composite formed a protective oxide layer with smaller pores and fewer gas and oxygen entry channels, resulting in good resistance to ablation.  相似文献   

14.
An oxyacetylene torch tested the ablation of SiC/SiC composites at 1800℃. According to the distribution of ablation product silica, the morphology could be divided into three regions. The fibers in the oval central region were ablated and broken, and the fracture surface is the conical tip. The silica liquid film in the transition region plays a role in resisting the ablation of the material. However, the generation of airflow channels destroys the liquid film's continuity and reduces the material's ablation resistance. Bean sprouts-like nano-sized silica was grown on the surface of the dome-top SiC matrix in the marginal region.  相似文献   

15.
《Ceramics International》2022,48(16):22985-22993
In this study, C/C–SiC and C/C–SiC–ZrC composites were prepared via chemical vapor infiltration and polymer infiltration pyrolysis, and the ablation mechanism under hypersonic oxygen-rich environmental conditions was investigated. The C/C–SiC composites demonstrate an excellent ablation resistance in a hypersonic oxygen-rich environment with a relatively low temperature and speed of approximately 1800 K and 1100 m/s, respectively. It is only in the ablation center area with higher temperatures that a certain degree of thermochemical ablation was observed. The mass and linear ablation rates of C/C–SiC composites (0.027 g/s and 0.117 mm/s, respectively) showed a significant increase in a hypersonic oxygen-rich environment with a temperature and velocity of approximately 2050 K and 2000 m/s, respectively. The high-temperature ablation resistance of ZrC-modified C/C–SiC–ZrC composites improved significantly. However, the ZrC ceramic component had a considerable impact on the ablation resistance of the material. The structural integrity of C/C–20SiC–30ZrC composites was relatively high in hypersonic oxygen-rich environments with a jet temperature and velocity of 2050 K and 2000 m/s, respectively, and mass and linear ablation rates were 0.012 g/s and 0.015 mm/s, respectively. When the ZrC content increased by 40%, the ablation resistance of the composite reduced significantly, whereas the mass and linear ablation rates increased to 0.043 g/s and 0.130 mm/s, respectively.  相似文献   

16.
SiC coatings reinforced with SiC nanowires were prepared on carbon/silicon carbide (C/SiC) composites through chemical vapor reaction route and chemical vapor deposition (CVD). The SiC nanowires were introduced to mainly improve the interface bonding properties of the coating and C/SiC composites. The microstructure, phase composition, thermal cycling, and bonding strength of the SiCnws–SiC coating were investigated. After nine thermal cycles, the weight loss of the SiCnws–SiC-coated C/SiC composites was only 4.6 wt.%. Tensile test results show that the tensile strength of the SiCnws–SiC-coated C/SiC composites was more than 4.5–4.6 MPa. The introduction of SiC nanowires effectively improved interface bonding strength, thus enhancing the thermal cycling and mechanical properties of the coating.  相似文献   

17.
Three-dimensional (3D) needled C/SiC composites were prepared and subjected to three-point bending tests from room temperature (RT) to 2000 ℃ under vacuum. The results show that the flexural strength and modulus increase in the range of RT to 800 °C due to the release of thermal residual stress (TRS). At 800–1700 °C, the modulus further increases for the further release of TRS, while the destruction of the pyrolytic carbon (PyC) coating reduces the flexural strength. Up to 2000 ℃, the thermal mismatch stress in the composites cause fiber slippage and matrix crack deflection to be zigzag, which increase the fracture strength. The change of components properties mediated by high temperature and the release of TRS play a leading role in the flexural strength and fracture mode. The results provide important support for the mechanical behavior of 3D needled C/SiC composites at ultra-high temperature.  相似文献   

18.
The unidirectional-laminated Cf/SiC–Al composites were prepared by using precursor infiltration and pyrolysis (PIP) and vacuum pressure infiltration processes. Bulk density and open porosity of as-prepared Cf/SiC–Al composites were characterized which showed a large number of pores in the unidirectional-laminated carbon fiber preform were filled with SiC and Aluminum alloy matrix. The uniaxial tensile tests were conducted to study the mechanical properties. The fracture surface and cross-section of tensile specimens were characterized to clarify the failure mechanism. The results showed that under the action of load, the propagation of microcracks in matrix led to interface debonding, fiber fracture and pull-out. According to the stress-displacement behavior and analysis of damage process, the prediction formulas of the linear proportional limit stress value and the tensile strength value were proposed. A bilinear constitutive model was established based on the assumption of the damage process which well characterized constitutive response of the composites.  相似文献   

19.
We have used TEM to study the microstructure of friction surface of carbon fibre/carbon–silicon carbide composites brake discs after multi braking stop by using organic pads. A friction surface layer was developed consistently on the top of Si regions of the composites, but inconsistently on that of SiC and C. Inside the layer, amorphous silicon/silicon oxides appeared extensively with various non-metallic and metallic crystallites dispersed inside with sizes ranging from a few nanometers to several microns. A coherent interface between the friction layer and the composite surface was established under the braking conditions, whilst its sustainability varied notably in SiC and C regions. Microcracking near the friction surface appeared in SiC and Cf/C regions largely due to the extensive ductile deformation of SiC and weak interfaces between C and Cf. Material joining mechanisms were discussed to enlighten the friction transfer layer development on the surface of the composite discs.  相似文献   

20.
This contribution aimed at developing a treatment under ammonia in order to eliminate free carbon from the surface of SiC-based fine ceramics like fibers or coatings. The reaction of NH3 with graphitic and non-graphitic carbon was first investigated through kinetic measurements, in situ gas phase analysis and physicochemical investigations of the solid. The carbon etching rate is controlled by heterogeneous reactions involving active sites arising from bulk structural defects and the formation of HCN. A selection of SiC-based fibers and coatings with various carbon contents and (micro)structures was treated in ammonia in favorable conditions. The analyses of the tested SiC–C specimens revealed a reduction of the free carbon content and, simultaneously, a nitridation of the initial Si–C–(O) continuum over a reaction layer. The growth rate, composition and the volume change of this layer vary with the initial microstructure. The ammonia treatment is able to restore the adhesion of carbon-contaminated surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号