首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(1):604-611
In this work, a low-temperature (100 °C) gas sensor based on heterojunctions of porous Si and SnO2 nanowires (NWs) is presented. Porous Si was obtained from p-Si wafers by electrochemical etching, and SnO2 NWs were fabricated by a vapor-liquid-solid route. Different characterization techniques were used to verify the formation of porous Si/SnO2 NW heterojunctions. H2S gas sensing results showed enhanced gas sensing performance of the porous Si/SnO2 NW sensor in comparison with that of a porous Si sensor. The reasons for such enhancement are discussed in detail. This study demonstrates the promising effects of SnO2 NWs in combination with porous Si to realize low-temperature H2S gas sensors that are highly compatible with existing Si processing technology.  相似文献   

2.
WO3 microspheres in a hierarchical nanorod-assembled architecture were prepared by using a facile one-pot hydrothermal method. The morphology and structure of pure, and 1, 3, and 5 mol% Pt-functionalized WO3 microspheres were characterized by means of SEM, TEM, XRD, XPS and FTIR measurements. Structural characterizations demonstrated that these WO3 microspheres assembled by numerous one-dimensional WO3 nanorods were approximately 2–5 µm in diameter. The nanorods with their diameters in the range of 70–90 nm showed a single crystal hexagonal structure. Gas sensors based on pure and Pt-functionalized WO3 microspheres showed reversible response and outstanding selectivity to xanthate gas at the operating temperature range of 75–175 °C. The sensor response increased with the increase of xanthate gas concentration. The highest response of 102.7 was obtained for the sensor based on 3 mol% Pt-functionalized WO3 microspheres to 100 ppm xanthate gas at an operating temperature of 100 °C, which could be ascribed to the large effective surface area and high porosity of WO3 microspheres as well as the catalytic effect of Pt nanoparticles.  相似文献   

3.
《Ceramics International》2022,48(9):12291-12298
Nanomaterials offer a wide range of applications in environmental nanotechnology. Hazardous pollutants in the environment are needed to be detected and controlled effectively to avoid human health risks. In this paper, we described the fine-controlled growth of In2O3 nanoparticles embedded on GO nanosheets by a facile precipitation method. The In2O3@GO nanocomposites exhibited outstanding gas sensing performance as compared with pure In2O3 nanoparticles towards NO2. At 225 °C, the sensor displayed high selectivity, best response (78) to 40 ppm NO2, quick response, and recovery times of 106s/42s. The improved sensing performances of the nanocomposite were attributed to large surface area, high gas adsorption-desorption capability, and the formation of p-n heterojunctions between In2O3 nanoparticles and GO nanosheets. The excellent gas detecting activities validate In2O3@GO nanocomposites as a promising candidate in the NO2 gas sensor industry.  相似文献   

4.
《Ceramics International》2016,42(14):15889-15896
Well-defined three-dimensional (3D) hierarchical tin dioxide (SnO2) nanoflowers with the size of about 200 nm were successfully synthesized by a simple template-free hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption analyses were used to characterize the structure and morphology of the products. The as-synthesized full crystalline and large specific surface area SnO2 nanoflowers were assembled by one-dimensional (1D) SnO2 nanorods with sharp tips. A possible self-assembly mechanism for the formation the SnO2 nanoflowers was speculated. Moreover, gas sensing investigation showed the sensor based on SnO2 nanoflowers to exhibit high response and fast response-recovery ability to detect acetone and ethanol at an operating temperature lower than 200 °C. The enhancement of gas sensing properties was attributed to their 3D hierarchical nanostructure, large specific surface area, and small size of the secondary SnO2 nanorods.  相似文献   

5.
The rate equation for the overall reaction of NO and O2 over Pt/Al2O3 was determined to be r=kf[NO] 1.05±0.08[O2]1.03±0.08[NO2]0.92±0.07(1-), with kf as the forward rate constant, =([NO2]/K[NO][O2]1/2), and K as the equilibrium constant for the overall reaction. An apparent activation energy of 82 kJ mol–1 ± 9 kJ mol–1 was observed. The inhibition by the product NO2 makes it imperative to include the influence of NO2 concentration in any analysis of the kinetics of this reaction. The reaction mechanism that fits our observed orders consists of the equilibrated dissociation of NO2 to produce a surface mostly covered by oxygen, thereby inhibiting the equilibrium adsorption of NO, and the non-dissociative adsorption of O2, which is the proposed rate determining step.  相似文献   

6.
《Ceramics International》2016,42(11):12807-12814
Vertically aligned ZnO nanorods (ZNRs) arrays with various aspect ratios were deposited by using a simple and inexpensive hydrothermal route at relatively low temperature of 90 °C. The influence of hydroxide anion generating agents in the solution on the growth of ZNRs arrays was studied. Hexamethylenetetramine (HMTA) and ammonia were used as hydroxide anion generating agents while polyethyleneimine (PEI) as structure directing agent. The combined effect of these three agents plays a crucial role in the growth of ZNRs arrays with respect to their rod length and diameter, which controls the aspect ratio. The deposited ZNRs exhibited hexagonal wurtize crystal structure with preferred orientation along (002) plane. The highly crystalline nature and pure phase formation of ZNRs was confirmed from FT-Raman studies. The maximum gas response (Rg/Ra) of 67.5 was observed for high aspect ratio ZNRs, deposited with combination of HMTA, ammonia as well as PEI. The enhancement in gas response can be attributed to high surface area (45 cm2/g) and desirable surface accessibility in high aspect ratio ZNRs. Fast response–recovery characteristics, especially a much quicker gas response time of 32 s and recovery time of 530 s were observed at 100 ppm NO2 gas concentration.  相似文献   

7.
《Ceramics International》2022,48(5):6600-6607
Ti3C2Tx, as a novel two-dimensional material, displays promising prospects in NH3 detection at room temperature. However, the NH3 detection limit of pristine Ti3C2Tx is still a major research concern. Therefore, it is important to explore new Ti3C2Tx-based nanocomposites for better NH3-sensing performance. In the present experiment, Ti3C2Tx/In2O3 nanocomposites were successfully synthesized by ultrasonication and characterized by XRD, FESEM, TEM, XPS, and BET. The optimal Ti3C2Tx/In2O3-based sensor had a high response of 63.8% (30.4 times higher than that of pristine Ti3C2Tx) to 30 ppm NH3 at room temperature. In addition, the optimal Ti3C2Tx/In2O3-based sensor had stable repeatability, excellent selectivity, and long-term stability, while exhibiting excellent potential for NH3 detection at room temperature.  相似文献   

8.
A series of B-doped V2O5/TiO2 catalysts has been prepared the by sol-gel and impregnation methods to investigate the influence of B-doping on the selective catalytic reduction (SCR) of NOx with NH3. X-ray diffraction, Brunauer-Emmett-Teller specific surface area, scanning electron microscope, X-ray photoelectron spectroscopy, temperature-programmed reduction of H2 and temperature-programmed desorption of NH3 technology were used to study the effect of the B-doping on the structure and NH3-SCR activity of V2O5/TiO2 catalysts. The experimental results demonstrated that the introduction of B not only improved the low-temperature SCR activity of the catalysts, but also broadened the activity temperature window. The best SCR activity in the entire test temperature range is obtained for VTiB2.0 with 2.0% doping amount of B and the NOx conversion rate is up to 94.3% at 210 ℃. The crystal phase, specific surface area, valence state reducibility and surface acidity of the active components for the as-prepared catalysts are significantly affected by the B-doping, resulting in an improved NH3-SCR performance. These results suggest that the V2O5/TiO2 catalysts with an appropriate B content afford good candidates for SCR in the low temperature window.  相似文献   

9.
采用物理气相沉积法,以纯铟粒为原料,在980℃下Si(100)基片上通过改变气流成分制备了一系列氧化铟纳米线,并采用扫描电子显微镜、X射线衍射和透射电子显微镜对其形貌和结构进行了表征.试验表明,随着氩气中氢气含量增加,纳米线的产量降低,10%的含氢量最优.纳米线的直径在50~100nm之间,长度可达几十微米.纳米线的结构是方铁锰矿体心立方单晶结构.纳米线的生长符合VLS模型,铟起到了自催化的作用.  相似文献   

10.
《Ceramics International》2017,43(11):8372-8377
Real-time monitoring of trace NO2 emission has been an emerging challenge in environment and health sectors lately. Aiming to overcome this challenge, NO2 gas sensors based on cuprous oxide quantum dots (Cu2O QDs) anchored onto reduced graphene oxide (RGO) nanosheets serving as a sensitive layer were prepared in this report. Apart from a series of purposive measurements, various characterization techniques such as XRD, Raman, XPS and TEM were employed as well to assist the exploration of sensors performance to NO2 gas. The experimental results revealed a 580% response enhancement for prepared RGO/Cu2O sensors compared with pure RGO counterparts, as well as an excellent selectivity. In a specific experiment, the sensing response attained 4.8% and 29.3% toward 20 ppb and 100 ppb NO2 respectively at 60 °C, which was larger than most Cu2O based resistive gas sensors. Moreover, further subtle modulation of this RGO/Cu2O nanocomposites led to a preferable room-temperature response of 37.8% toward 100 ppb NO2, which also offered a favorable stability of 98.1% response retention after four exposures within ten days. The obtained results imply that the prepared RGO/Cu2O QDs sensors possess a competitive capability of trace NO2 detection.  相似文献   

11.
《Ceramics International》2017,43(5):4112-4118
Hierarchical pore structure nano-sized SnO2 was synthesized using a solvothermal method with SnCl4 as the raw material and grapefruit peel as the bio-template. The products were characterized by powder X-ray diffraction, high resolution scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. The results show that the SnO2 prepared from the grapefruit peel bio-template consists of many large size (5–20 µm) interconnected pores with a honeycomb structure and nanosized pores (9.46 nm) on the walls of the large pores. The as-prepared SnO2 presented a high specific surface area of 42.98 m2/g and the average crystallite size was about 10±0.5 nm. The gas sensing performance of the prepared material toward several volatile organic compounds was investigated. The results show that the hierarchical pore structure nano-sized SnO2 was highly sensitive and selective to n-butanol, indicating that this material may be a promising candidate for future development as a n-butanol gas sensor.  相似文献   

12.
Dawody  Jazaer  Tönnies  Inga  Fridell  Erik  Skoglundh  Magnus 《Topics in Catalysis》2007,42(1-4):183-187
Transient experiments were performed to study sulfur deactivation and regeneration of Pt/BaO/Al2O3 and Pt/SrO/Al2O3 NO x storage catalysts. It was found that the strontium-based catalysts are more easily regenerated than the barium-based catalysts and that a higher fraction of the NO x storage sites are regenerated when H2 is used in combination with CO2 compared to H2 only.  相似文献   

13.
《Ceramics International》2021,47(20):28811-28820
Highly sensitive NO2 gas sensors with low detection limit are vital for practical application in air pollution monitoring. Here, the NO2 gas sensing performance of porous ZnO nanosheets and nanoplates were investigated, with different shape and thickness. It was found that ultra-thin ZnO nanoplates had a higher sensitivity than coral-like ZnO nanosheets. The results were attributed to the high specific surface and very small thickness of the ultrathin nanoplates. The nanoplates have indeed a thickness of 15 nm compared to that of the nanosheets which is 100 nm, and a BET surface area of 75 m2/g, while that of the nanosheets is 6 m2/g. The chemosensor based on ultra-thin ZnO nanoplates shows a response (calculated as the ratio between the resistance of the sensor in the presence of the gas and in its absence) of 76 to 0.5 ppm of NO2 at 200 °C, with a theoretical detection limit of 3 parts per trillion and a selectivity higher than 760 towards acetone, ethanol, isopropyl alcohol, triethylamine, SO2 and CO. The specific surface and the small thickness of the ultra-thin nanoplates contribute to its highly improved sensing performance, making it ideal for NO2 gas sensing.  相似文献   

14.
The rates and product selectivities of the C3H6-NO-O2 and NO-H2 reactions over a Pt/Al2O3 catalyst, and of the straight, NO decomposition reaction over the reduced catalyst have been compared at 240C. The rate of NO decomposition over the reduced catalyst is seven times greater than the rate of NO decomposition in the C3H6-NO-O2 reaction. This is consistent with a mechanism in which NO decomposition occurs on Pt sites reduced by the hydrocarbon, provided only that at steady state in the lean NO x reaction about 14% of the Pt sites are in the reduced form. However, the (extrapolated) rate of the NO-H2 reaction at 240C is about 104 times faster than the rate of the NO decomposition reaction thus raising the possibility that NO decomposition in the former reaction is assisted by Hads. It is suggested that adsorbate-assisted NO decomposition in the C3H6-NO-O2 reaction could be very important. This would mean that the proportion of reduced Pt sites required in the steady state would be extremely small. The NO decomposition and the NO-H2 reactions produce no N2O, unlike the C3H6-NO-O2 reaction, suggesting that adsorbed NO is completely dissociated in the first two cases, but only partially dissociated in the latter case. It is possible that some of the associatively adsorbed NO present during the C3H6-NO-O2 reaction may be adsorbed on oxidised Pt sites.  相似文献   

15.
Monocrystal SnO2 and Pd-SnO2 nanoribbons have been successfully synthesized by thermal evaporation, and novel ethanol sensors based on a single Pd-SnO2 nanoribbon and a single SnO2 nanoribbon were fabricated. The sensing properties of SnO2 nanoribbon (SnO2 NB) and Pd-doped SnO2 nanoribbon (Pd-SnO2 NB) sensors were investigated. The results indicated that the SnO2 NB showed a high sensitivity to ethanol and the Pd-SnO2 NB has a much higher sensitivity of 4.3 at 1,000 ppm of ethanol at 230°C, which is the highest sensitivity for a SnO2-based NB. Pd-SnO2 NB can detect ethanol in a wide range of concentration (1 ~ 1,000 ppm) with a relatively quick response (recovery) time of 8 s (9 s) at a temperature from 100°C to 300°C. In the meantime, the sensing capabilities of the Pd-SnO2 NB under 1 ppm of ethanol at 230°C will help to promote the sensitivity of a single nanoribbon sensor. Excellent performances of such a sensor make it a promising candidate for a device design toward ever-shrinking dimensions because a single nanoribbon device is easily integrated in the electronic devices.  相似文献   

16.
《Ceramics International》2023,49(13):21455-21464
Gas sensors with good repeatability and controllable fabrication method are extremely desired for practical applications. Co-MOF-derived Co3O4 is a promising gas-sensing material candidate because of its large surface area, ultrahigh porosities, and abundant oxygen defects. However, the advantages of Co-MOF precursor were limited by the traditional sensor fabrication methods. Moreover, the high resistance and poor surface activity of Co3O4 resulted in low gas-sensing performance at room temperature (RT). To overcome these challenges, in-situ sensors based on Co3O4 porous films with controlled nanoscale thickness were directly prepared on ceramic substrates by using Co-MOF films as precursors. To further improve the conductivity, SnO2 catalytic overlayers were introduced on top of Co3O4 sensors to construct SnO2/Co3O4 bilayer sensors, which were promising for triethylamine (TEA) detection at RT. As a result, the optimized SnO2/Co3O4 sensor exhibited a fast response/recovery rate (11 s/16 s), high selectivity, and a satisfactory sensitivity (150%) to TEA at RT. The enhanced gas-sensing performance could be attributed to the unique bilayer structures, improved conductivity, and synergistic effects of the SnO2 catalytic overlayers and Co3O4 sensing layers.  相似文献   

17.
Pt/Al_2O_3催化剂失活分析及再生处理   总被引:4,自引:1,他引:4  
介绍了苯加氢制环己烷过程中的Pt/Al2 O3 催化剂酸中心的产生、积碳、机械杂质的覆盖及水、硫、一氧化碳等对催化剂活性、选择性、寿命的影响 ,以及催化剂失活后的再生方法  相似文献   

18.
Field electron microscopy (FEM), high-resolution electron energy loss spectroscopy (HREELS), molecular beams (MB) and temperature-programmed reaction (TPR) have been applied to the study of the kinetics of CO oxidation at low temperature, and to determine the roles of subsurface atomic oxygen (Osub) and surface reconstruction in self-oscillatory phenomena, on Pd(111), Pd(110) and Pt(100) single crystals and on Pd and Pt tip surfaces. It was found that high local concentrations of adsorbed CO during the transition from a Pt(100)-hex reconstructed surface to the unreconstructed 1×1 phase apparently prevents oxygen atoms from occupying hollow sites on the surface, and leads to the appearance of a weakly bound active adsorbed atomic oxygen (Oads) state in an on-top or bridge position. It was also inferred that subsurface oxygen Osub on the Pd(110) surface may play an important role in the formation of new active sites for the weakly bound Oads atoms. Experiments with 18O isotope labeling clearly show that the weakly bound atomic oxygen is the active form of oxygen that reacts with CO to form CO2 at T 140–160 K. Sharp tips of Pd and Pt, several hundreds angstroms in diameter, were used to perform in situ investigations of dynamic surface processes. The principal conclusion from those studies was that non–linear reaction kinetics is not restricted to macroscopic planes since: (i) planes as small as 200 Å in diameter show the same non-linear kinetics as larger flat surfaces; (ii) regular waves appear under conditions leading to reaction rate oscillations; (iii) the propagation of reaction–diffusion waves involves the participation of different crystal nanoplanes via an effective coupling between adjacent planes.  相似文献   

19.
The NOx storage catalyst Pt/BaAl2O4-Al2O3 was prepared by a coprecipitation--impregnation method. For fresh sample, the barium mainly exists as the BaAl2O4 phase except for some BaCO3 phase. The BaAl2O4 phase is the primary NO x storage phase of the sample. EXAFS and TPD were used for investigating the mechanism of NO x storage. It is found that two kinds of Pt sites are likely to operate. Site 1 is responsible for NO chemisorption and site 2 for oxidizing NO to nitrates and nitrites. When NO adsorbs on the sample below 200 °C, it mainly chemisorbs in the form of molecular states. Such adsorption results in an increase of the coordination magnitude of Pt-O, and a decrease of that of Pt-Pt and Pt-Cl. The coordination distance of Pt-Pt, Pt-Cl and Pt-O also increases. When the adsorption occurs above 200 °C, NO can be easily oxidized by O2, and stored as nitrites or nitrates at the basic BaAl2O4. Site 2 is regenerated quickly. A high adsorption temperature is favorable for nitrate formation.  相似文献   

20.
Roth  D.  Gelin  P.  Tena  E.  Primet  M. 《Topics in Catalysis》2001,16(1-4):77-82
Pd and Pt catalysts supported on alumina, tin(IV) oxide and tin(IV) oxide grafted on alumina were prepared, characterised and tested with respect to the low-temperature combustion of methane after reduction in H2 and ageing under reactants at 600°C. In the case of Pd, the use of SnO2 or SnO2-based supports led to catalysts slightly less active than Pd/Al2O3. In contrast, SnO2 was found to strongly promote the oxidation of methane over Pt catalysts with respect to Pt/Al2O3, even after ageing under reactants. When Pt was supported on SnO2 grafted on Al2O3, the activity was found at most similar to or, after ageing, lower than Pt/Al2O3. This negative effect was discussed, being partly related to the sintering of SnO2 under reactants observed by FTIR and XRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号