首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addition of 0.5?wt% of graphene nanoplatelates (GNPs) and 1?wt% carbonnanotube (CNTs) in plasma sprayed Al2O3 coating showed the reduction of 93.25% in wear volume loss and 90.94% in wear rate. This could be attributed to the simultaneous effect of enhanced densification, presence of the transferred layer from the counterpart, strong interface between Al2O3, GNP and CNTs and toughening offered by the GNPs and CNTs. The lowest COF value of 0.27 was recorded on addition of 0.5?wt% of GNP in Al2O3 coating, which could be attributed to the graphitic lubrication on the worn track during the wear.  相似文献   

2.
《Ceramics International》2022,48(6):8031-8038
In this work, we showed that immersing polymethyl methacrylate (PMMA)/poly alpha olefins (PAO6) microcapsules into the porous matrix can improve the lubrication properties of porous alumina ceramics dramatically. PMMA/PAO6 microcapsules were synthesized by microemulsion polymerization, and the microcapsules were immersed in the porous alumina ceramic matrix by vacuum impregnation. The lubrication behaviors of the porous alumina ceramics with PMMA/PAO6 microcapsules have been investigated under different loads. As compared with the unprocessed porous alumina ceramics, the coefficient of friction (COF) of the porous ceramics impregnated with microcapsules could be reduced to 4% of that without microcapsules, and the wear rate could be reduced by two orders of magnitude. No obvious change of the COF was noticed for the matrices with different pore sizes. The good self-lubrication properties were achieved by releasing the PAO6 in the microcapsules during the friction process.  相似文献   

3.
Among the available ceramics materials for load bearing bio-implant applications, Y-TZP is superior (fracture toughness: ∼10 MPa m0.5) for its better mechanical properties. However, due to concerns related to property degradation of Y-TZP during long exposure in body fluid, the current work is taken up to study the feasibility of developing stabilised zirconia ceramics in CaO–ZrO2 system, using microwave sintering (MW) technique. The present paper reports the processing, microstructure and tribological properties of microwave sintered Ca-doped ZrO2 based ceramics. An important experimental result is that MW sintering to greater than 90% theoretical density can be achieved in Ca-PSZ (8 mol% CaO) and Ca-FSZ (16 mol% CaO) ceramics by sintering at 1585 °C for 1 h. The sintered materials exhibit Vickers hardness ∼8–10 GPa, which would allow them to be used as load bearing implants. Also, a modest fracture toughness (∼6 MPa m0.5) was measured for Ca-PSZ, which is better than commercial grade alumina. So, it is possible to synthesize a material which has better combination of hardness and toughness than other commercially available bioceramics like alumina, hydroxyapatite, TCP, etc. Considering its specific application for THR (total hip replacement), tribological experiments using fretting wear tester serve to provide data about the wear behaviour of the proposed materials. The fretting experiments were conducted against a bearing-steel counterbody in air as well as in a SBF (simulated body fluid) environment. The wear behaviour of the investigated tribocouple is dominated by the formation of Fe oxide/chloride layer at the worn surface.  相似文献   

4.
《Ceramics International》2022,48(18):26342-26350
In this study, bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films were grown on carbide cutting tool material by cathodic arc physical vapor coating (CAPVD) method to improve the structural/tribological properties and milling performances. The ceramic films were applied on cylindrical test samples and carbide end mills. The coated materials' structural, mechanical, and tribological properties were determined via scanning electron microscope (SEM), X-ray diffraction meter (XRD), tribometer, microhardness tester, and optical profilometer. DIN 40CrMnNiMo8-6-4 steel workpieces were machined by using a CNC vertical machining center to determine the actual working performance of the coated and uncoated cutting tools. The wear performance of the cutting tools after machining was determined by measuring the flank wear widths and mass losses. The hardness and adhesion results of the coated sample with bilayer TiAlN/TiSiN were higher than the coated sample with monolayer AlCrSiN. According to the scratch test results, the best adhesion results were obtained for TiAlN/TiSiN coating. The critical load value was determined as about 105 N. As a result, the wear rate value of the TiAlN/TiSiN thin film coated sample was lower. After machining, the mass loss of TiAlN/TiSiN coated tools was lower than AlCrSiN coated tools. In addition, the surface roughness value of the workpiece machined by the cutting tool coated with AlCrSiN was higher than the cutting tool coated with TiAlN/TiSiN.  相似文献   

5.
Silicon carbide-based ceramic matrix composites have received extensive attention in recent years. Many excellent reviews have reported on the tribological behavior of carbon fiber-reinforced carbon and silicon carbide dual matrix (C/C-SiC) composites. However, a systematic overview of the tribological properties of carbon fiber-reinforced silicon carbide (C/SiC) composites does not exist. This review focuses on C/SiC composites and summarizes the key factors, including internal factors (constituent content, graphitization process, material structure and fiber direction), and various test conditions (pressure and speed, dry and wet, temperature, and counterparts) that affect their tribological behavior. Their wear mechanisms under different conditions are elaborated. Finally, some potential future development directions for improving the performance of C/SiC composites are proposed to provide high-quality ceramic matrix composites for engineering applications. These directions include structural modification, matrix modification, coating technology, laser surface texturing, and material genome method.  相似文献   

6.
《Ceramics International》2020,46(3):2743-2757
To meet the needs of corrosion resistance and electrically conductivity for metallic bipolar plates that are employed in proton exchange membrane fuel cells (PEMFCs), a TiSiN nanocomposite coating was fabricated on to a Ti–6Al–4V substrate using reactive sputter-deposition through the double cathode glow discharge plasma technique. The microstructure of the TiSiN coating comprised nanocrystallite TiN grains embedded in an amorphous Si3N4 matrix. Electrochemical measurements were employed to investigate the corrosion behavior of the TiSiN coating in the simulated operating environments of a PEMFC, specifically 0.5 M H2SO4 solution containing different HF concentrations (namely 2, 4 and 6 ppm) at 70 °C pumped with H2 at the anode and air at the cathode. With increasing HF concentration, a higher corrosion current density and lower corrosion potential were observed from both the coating and the uncoated substrate, indicating that the addition of HF accelerated their corrosion rates under these conditions. Compared to the uncoated substrate, the TiSiN coating showed a markedly higher corrosion resistance at all HF concentrations. The passive film that formed on the TiSiN coating, with a resistance of the order of magnitude of ~107 Ω cm2, displayed good electrochemical stability and was less affected by changes in HF concentration. For the TiSiN coating, the values of interfacial contact resistance (ICR) were 14.7 mΩ cm−2 and 18.3 mΩ cm−2, respectively, before and after 2.5 h potentiostatic polarization with 6 ppm HF under cathodic conditions under a compaction pressure of 140 N cm−2. Both values are much lower than those for the bare substrate. Moreover, the TiSiN coating was shown to improve the hydrophobicity of Ti–6Al–4V that would help facilitate water management in the PEMFC operating environment. This coating, which exhibited excellent corrosion resistance, electro-conductivity and hydrophobicity, is therefore a promising material for protecting metallic bipolar plates from corrosive attack.  相似文献   

7.
In this study, the Ti-6Al-4V substrate was coated by CrN-CrN/TiN-TiN and CrN/CrAlN multilayer coatings using the cathodic arc physical vapor deposition (Arc-PVD) method. The results of potentiodynamic polarization (PDP) have shown the lowest and highest corrosion current density belong to the double-layer (0.16 µA/Cm2) and TiN (0.51 µA/Cm2) samples, indicating the higher corrosion resistance of the double-layer coating. The field emission electron microscope (FESEM), X-ray diffraction pattern (XRD), open circuit potential (OCP), PDP, and electrochemical impedance spectroscopy (EIS) analysis were employed in order to characterize the coatings and evaluate their corrosion behavior. Finally, applying the double-layer coating resulted in the significant improvement of the protective behavior of the Ti-6Al-4V alloy, as compared to the sample coated with TiN in corrosive environments.  相似文献   

8.
《Ceramics International》2019,45(11):14015-14028
To enhance mechanical properties and anti-corrosion capability of Ni-W alloy further, Ni-W/TiN nanocomposite coating has been co-deposited via pulse current co-deposition in this work. The effects of TiN nanoparticles and operating parameters on the structure and properties of the deposited coating were examined. It illustrated that the nanocomposite coatings are uniform, dense and crack-free, exhibiting dome-like or hill-valley like structure. The particles were homogeneously incorporated in the metallic matrix. RTC analysis indicated that the preferred orientation of Ni-W/TiN was (111) texture. The crystallite size was of 10–16 nm, indicating the formation of nanocrystalline structure. TiN concentration, duty cycle and frequency could influence the amount of TiN particle and W element in the coating, then regulating hardness and anti-wear behaviors. The low duty cycle and long deposition time could diminish the roughness of the coating. The inclusion of TiN nanoparticles in the nickel matrix could promote the nucleation of fresh nickel crystals and restrict the growth of already formed nickel grains, favoring the homogeneous growth and grain refinement of Ni-W crystals. The doped TiN particles would favor the preferred orientation (111) plane, enhanced the hardness, wear and corrosion resistance of Ni-W alloy. Electrochemical results illustrated that the best corrosion-resistant properties of the nanocrystalline coating could be obtained at TiN 30 g L−1, duty cycle of 20% and frequency of 60–200 Hz. The enhanced mechanical properties and corrosion resistance of Ni–W/TiN coating benefits its application in harsh corrosive environment.  相似文献   

9.
In-situ synthesis of dense near-single phase Ti3SiC2 ceramics from 3Ti/SiC/C/0.15Al starting powder using spark plasma sintering (SPS) at 1250 °C is reported. Systematic analysis of the phase development over a range of sintering temperatures (1050–1450 °C) suggested that solid state reactions between intermediate TiC and Ti5Si3 phases lead to the formations of Ti3SiC2. The effect of starting powder composition on phase development after SPS at 1150 °C was also investigated using three distinct compositions (3Ti/SiC/C, 2Ti/SiC/TiC, and Ti/Si/2TiC). The results indicate that the starting powder compositions, with higher amounts of intermediate phase such as TiC, favor the formation of Ti3SiC2 at relatively lower sintering temperature. Detailed analysis of wear behavior indicated that samples with higher percentage of TiC, present either as an intermediate phase or a product of Ti3SiC2 decomposition, exhibited higher microhardness and better wear resistance compared to near single phase Ti3SiC2.  相似文献   

10.
The main objective of the present research is to investigate the production of Cu-Al2O3 nanocomposite coating on a copper substrate using solution combustion synthesis. Solution combustion synthesis is mainly used to produce nanocomposite powders; however, in this study it is applied to produce nanocomposite coat. For this purpose, both copper and aluminum nitrates (Cu (NO3)2·3H2O and Al (NO3)3·9H2O) are used as oxidizers. Also, urea and graphite are respectively used as fuel to synthesize the Cu-Al2O3 nanocomposite and as inhibitor to prevent the oxidation of the synthesized copper. The microstructure and morphology of the nanocomposite coating, which includes 25 wt% alumina as the reinforcing phase, was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy at different fuel/oxidizer ratios ranging from 0.9 to 2. The temperature variation during the process was measured as a function of time using a precise thermocouple. Finally, micro-hardness and wear tests were conducted on the nanocomposite coating. The results verified the formation of Cu-Al2O3 nanocomposite coating. Time-temperature curve illustrated that the highest temperature was achieved at the fuel/oxidizer ratio of 1.25. The results of the microhardness and wear resistance test showed that these properties depend heavily on the fuel/oxidizer ratio, with the best condition attained at the ratio of 1.25.  相似文献   

11.
《Ceramics International》2016,42(5):6129-6135
To prepare interpenetrating alumina–copper composites, alumina foams were activated with titanium coating by chemical vapor deposition and then were infiltrated with molten copper by expendable casting process. The microstructure and phase composition of the composites were analyzed, and bending strength, electrical conductivity, friction and wear properties were tested. The results showed that the bonding between ceramic and metal was fine in the composites while no reactions took place between them because of the undissolved titanium coating. With increase of ceramic fraction, the electrical conductivity of the composite decreased, whereas the bending strength increased. The composite failure occurred by ductile fracture of the metal followed by fracture of the ceramic. The wear rate of the composites decreased with increase of ceramic fraction. And the wear of the composites was featured with ceramic struts peeling compared with ploughing and adhering wear for pure copper.  相似文献   

12.
《Ceramics International》2017,43(10):7607-7617
The carbon fiber reinforced/carbon-boron nitride (C/C-BN) dual matrix composites were fabricated via adding hexagonal boron nitride (h-BN) powders into the needled carbon felt and subsequent chemical vapor infiltration (CVI) process. An experimental investigation was performed to study the influences of BN volume content on the microstructures and tribological properties of C/C-BN composites. The results indicate that the pyrolytic carbon (PyC) in the C/C-BN composites is regenerative laminar (ReL) due to the inducement of BN powders during CVI process, whereas the PyC in the C/C composite is classic smooth laminar. Additionally, the friction coefficients of C/C-BN composites with three different BN contents in volume fractions (4.5, 9 and 13.5 vol%) are all higher compared to the reference C/C composite (0.22). Note that the highest coefficient of friction (0.29) is obtained when the BN volume content in the C/C-BN composite is 9 vol%. Moreover, the linear and mass wear rates of C/C-BN composites as well as the 30CrSiMoVA counterparts are significantly decreased with the increase of BN volume content. The favorable friction and wear properties of C/C-BN composites are attributed to the synergistic effect induced by the ReL PyC and BN. The microstructural variation of C/C composites modified by h-BN could improve the compatibility between the C/C-BN composites and 30CrSiMoVA counterpart, resulting in an enhanced adhesive attraction between the wear debris and the surface of 30CrSiMoVA counterpart. Furthermore, the investigations concerning the friction surfaces indicate that the formation of sheet-like friction films with large areas are more easily to occur on the surfaces of 30CrSiMoVA counterparts mating with the C/C-BN composites rather than mating with the C/C composite.  相似文献   

13.
《Ceramics International》2016,42(10):11941-11950
In this study, a novel bi-layered nanostructured silica (SiO2)/ silver-doped fluorohydroxyapatite (Ag-FHAp) coating was deposited on biodegradable Mg-1.2Ca-4.5Zn alloy via physical vapor deposition (PVD) combined with electrodeposition (ED). The nano-SiO2 underlayer had a compact columnar microstructure with thickness of around 1 µm while the Ag-FHAp overlayer presented large plate-like crystals accompanied with small rounded particles with thickness about 10 µm. Potentiodynamic polarization test exhibited that the double layer SiO2/Ag-FHAp coated Mg alloy has superior corrosion resistance compared to uncoated and single layer SiO2 coated samples. Contact angle measurement showed that Ag-FHAp coating over nano-SiO2 layers significantly increased surface wettability which is favorable for the attachment of cells. Cytotoxicity tests indicated that the nanostructured SiO2/Ag-FHAp coating enabled higher cell viability compared to nano-SiO2 coating and uncoated samples. In addition, bi-layer and single-layer coatings considerably improved the ability of cell attachment than that of the uncoated samples. The cell viability of coated and uncoated samples increased with increasing incubation time. The double layer SiO2/Ag-FHAp coated biodegradable Mg alloy possessed high corrosion resistance and cytocompatibility and can be considered as a promising material for implant applications.  相似文献   

14.
There is an urgent need for the thermal protection of carbon/carbon composites to increase their service span in aerospace field. As members of ultra-high temperature ceramics, HfC and ZrC are thought to be alternative materials, but their poor oxidation behavior and fracture toughness at temperature over 2000 ℃ prevent them from taking full advantages. Herein, we synthesized nanosized Hf6Ta2O17 powders and introduced them into HfC ceramic to tackle the above problems. Plasma-sprayed HfC coatings with Hf6Ta2O17 varied from 0 to 15 mol.% (0, 1.25, 2.5, 5, 15) were exposed to an oxyacetylene torch with a heat flux of 2.38 MW/m2. The one with 2.5 mol.% Hf6Ta2O17 showed the best ablation resistance. Smaller doping was unable to effectively hinder oxygen diffusion given the inadequate compactness of the formed scale, conversely substantial humps and ruptures formed on the samples with higher amounts, acting as straightforward paths for oxygen.  相似文献   

15.
To maintain the thermal stability of SiC nanowires during SiC coating fabrication process, carbon and SiC double protective layers were covered on the surface of nanowires. And SiC nanowires with double protective layers toughened SiC coating were prepared by pack cementation. The results showed that after introducing the SiC nanowires with double protective layers, the fracture toughness of the SiC coating was increased by 88.4 %. The coating protected C/C for 175 h with a mass loss of 3.67 %, and after 51 thermal shock cycles, the mass losses of the oxidized coating were 3.96 %. The double protective layers are beneficial to improve the thermal stability of nanowires, leading to good fracture toughness and thermal shock resistance of SiC coating. SiC nanowires consume the energy of crack propagation by fracture, pullout and bridging, leading to an increase in fracture toughness.  相似文献   

16.
To protect carbon/carbon (C/C) composites from oxidation at high temperature, Y2O3 modified ZrB2-SiC coating was fabricated on C/C composites by atmospheric plasma spraying. The microstructure and chemical composition of the coatings were characterized by SEM, EDS, and XRD. Experiment results showed that the coating with 10 wt% Y2O3 presented a relatively compact surface without evident holes and cracks. No peeling off occurred on the interface between the coating and substrate. The ZSY10 coating underwent oxidation at 1450 °C for 10 h with a mass loss of 5.77%, while that of ZS coating was as high as 16.79%. The existence of Y2O3 played an important role in inhibiting the phase transition of ZrO2, thus avoiding the cracks caused by the volume expansion of the coating. Meanwhile, Y2SiO5 and ZrSiO4 had a similar coefficient of thermal expansion (CTE), which could relieve the thermal stress inside the coating. The ceramic phases Y2SiO5, Y2Si2O7 and ZrSiO4 with high thermal stability and low oxygen permeability reduced the volatilization of SiO2.  相似文献   

17.
Ceramic matrix composites are typically prepared by a costly, time-consuming process under severe conditions. Herein, a cost-effective C/SiC composite was fabricated from a silicon gel-derived source by Joule heating. The β-SiC phase was generated via carbothermal reduction, and the carbon fabric showed a well-developed graphitic structure, promoting its thermal and anti-oxidation stabilities. Owing to the excellent dielectric loss in carbon fabric, SiC and SiO2 as well as the micropore structure of the ceramic matrix, the absolute electromagnetic interference shielding (EMI) effectiveness (SSE/t) reached 948.18 dB?cm2?g-1 in the X-band, exhibiting an excellent EMI SE. After oxidation at 1000 °C for 10 h in the air, the SSE/t of the composite was only reduced to 846.02 dB?cm2?g-1. The C/SiC composite promises the efficient fabrication of high-temperature resistant materials for electromagnetic shielding applications.  相似文献   

18.
《Ceramics International》2022,48(24):36853-36859
Copper/graphite composites and copper/graphite/Ti2SnC composites were fabricated through the process of ball-milling, pressing and sintering. The effects of Ti2SnC as the second lubrication component on the mechanical properties, wear resistance and lubrication properties of copper/graphite composites were studied in this paper. The results showed that copper/graphite/Ti2SnC composites had better hardness, impact toughness, wear resistance and lubrication performance than copper/graphite composites. The optimum values of hardness, impact toughness, friction coefficient and wear rate of copper/graphite/Ti2SnC composites were, respectively, 56 HSD, 1.8J/cm2, 0.15, 9.126 × 10?6 mm3/N·m, while these were only 45 HSD, 1.2 J/cm2, 0.17, 3.534 × 10?4 mm3/N·m of copper/graphite composites.  相似文献   

19.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   

20.
To reduce the influence of coating preparation on the mechanical properties of carbon/carbon composites and further improve the antioxidant properties of the coating, a SiC-Si coating was fabricated on carbon/carbon composites by gaseous silicon infiltration (GSI-SiC-Si). For comparison, a SiC-Si coating was also prepared by pack cementation (PC-SiC-Si). A comparative investigation showed the GSI-SiC-Si coating possesses relative lower roughness, better mechanical and anti-oxidation properties. The GSI-SiC-Si coating samples maintained 87.8 % flexural strength of bare C/C composites, while the C/C substrate was severely siliconized in PC-SiC-Si coating samples. The GSI-SiC-Si coating samples could undergo 30 thermal cycles between 1773 K and room temperature and effectively protect C/C composites from oxidation at 1773 K for more than 500 h without weight loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号