首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2 was employed to develop cordierite glass–ceramics for thermal transmission pipeline binders by a melt-quenching method. The effects of TiO2 on the phase composition, microstructure, and physical properties of glass–ceramics were studied. In addition, the thermal shock resistance of the glass–ceramics based binder was investigated. The results showed the formation of α cordierite could be increased by adding 1.0 wt% TiO2, thereby improving bending strength and decreasing the coefficient of thermal expansion. However, a 3-5 wt% TiO2 additive resulted in massive generation of µ cordierite, which exhibited a negative effect on the above performances. After crystallization at 1000°C for 2 h, sample B1 (1 wt% TiO2 additional) displayed the best overall properties. It was demonstrated that cordierite glass–ceramics were satisfactory materials as heat transmission pipeline binders when the C2 binder (40 wt% frit, 60 wt% as-prepared sample B1) was applied, which had a good thermal shock resistance.  相似文献   

2.
《Ceramics International》2021,47(24):34794-34801
Ho2O3 was employed to improve the microstructural densification and performances of pressureless sintered corundum–mullite ceramic composites. This study investigated the influences of Ho2O3 addition on the microstructure, physical properties and thermal shock resistances of the composites. The results indicated that sample AH5 (80 wt% Al2O3, 20 wt% coal series kaolin, and 5 wt% additional Ho2O3), which was sintered at 1550 °C, showed the best comprehensive properties. In this Al2O3-rich and SiO2-poor system, a reaction between the Ho2O3 and Al2O3–SiO2 system produced an Ho2O3–Al2O3–SiO2 liquid phase. This liquid phase increased the microstructural densification and resulted in a lower sintering temperature. The generation of mullite and holmium disilicate during thermal shocks improved the thermal shock resistance. The high bending strength and satisfactory thermal shock resistance of the as-prepared corundum–mullite ceramic composites showed their potential for use in heat transmission pipelines.  相似文献   

3.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

4.
In search of better ionically conducting ceramics for high temperature oxygen fuel cells and sensors, the conductivity and microstructure of the HfO2–ZrO2–Y2O3 system with 15 mol% of Y2O3 and the HfO2–ZrO2–Y2O3–Al2O3 system with 50 mol% of Al2O3 have been investigated with X-ray diffractometry (XRD), scanning electron microscopy (SEM) and conductivity measurements as a function of temperature. The stability of electrolyte compositions was studied by continuously monitoring conductivity as a function of time at 1000°C. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. In the HfO2–ZrO2–Y2O3–Al2O3 electrolyte systems the parameter pe′ was measured at a temperature range of 1000–1400°C. The HfO2–ZrO2–Y2O3–Al2O3 electrolyte systems have also showed better thermal shock resistance than the ZrO2–Y2O3 systems. A comparison between the ageing of ZrO2- and HfO2-based electrolyte systems, as a result of long time annealing at a temperature of 1000°C, indicated that the degradation of the HfO2-based system at a temperature of 1000°C and above is 1.5 times lower than the degradation of the ZrO2-based systems.  相似文献   

5.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   

6.
《Ceramics International》2023,49(19):31035-31045
Al2O3 fibers are promising candidates for porous ceramics, but the sudden growth of grains in the fibers above 1200 °C will limit their applications for high temperature. Herein, we reported the successful fabrication of the Al2O3–ZrO2 nanofibers by electrospinning and the nanofiber-based porous ceramics by a combination of gel-casting, freeze-drying and high-temperature sintering. Results show that the addition of Zr could greatly improve the thermal stability (up to 1400 °C) of the Al2O3-based nanofibers, owing to the inhibition of the sudden growth of the grains in the fibers at high temperature. The Al2O3–ZrO2 nanofiber-based porous ceramics after sintering at 1100–1400 °C possessed a multi-level pore structure and exhibited high thermal stability, ultra-high porosity (97.79–98.04%), ultra-low density (0.075–0.091 g/cm3) and thermal conductivity (0.0474–0.0554 W/mK), and excellent sound absorption performance with the average sound absorption coefficient of 0.598–0.770. These porous ceramics are expected to be employed in the fields of high-temperature thermal insulation and sound absorption.  相似文献   

7.
This study describes the synthesis of ceramics, in which a micrometre-sized Al2O3–ZrO2 nanopowder was used as an oxide base for the hardening of the materials. To a suspension of this mixed metal oxide, the pore-forming crystallisation additives camphor and carbamide were added to produce ceramics with thin permeable pores. Camphor crystallised in the oxide suspension in the form of single pentagonal stars and сarbamide crystallised in the form of thin elongated needles. The use of the different crystallisation additives allowed the formation of ceramics after sintering that have both permeable and complex pore morphologies, where anisotropic properties were observed using carbamide as an additive but not when camphor was used. The total porosity of the resulting ceramics was 51.3%, with a compressive strength in the range of 17.3–92.3 MPa.  相似文献   

8.
9.
The effects of adding 1–8 wt% Y2O3 on phase formation and fracture toughness of Al2O3xZrO2–Y2O3(AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral-Al2O3, while the minor phase consisted of the monoclinic-ZrO2, tetragonal-ZrO2 and monoclinic-Y2O3. It was found that Y2O3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m1/2 was obtained from 4 wt% Y2O3. Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y2O3 conditions the proportion of tetragonal-ZrO2 phase plays an important role for the mechanical properties of AZY ceramics.  相似文献   

10.
Al2O3–ZrO2(3Y)–SiC composite powder was prepared by the heterogeneous precipitation method. Calcinating temperature of the powder was important to obtain dense sintered body. The nanocomposites were got by hot-pressing, and addition of ZrO2 did not raise the sintering temperature. Some Al2O3 grain shape was elongated, and Al2O3 grain size was about μm. Nano SiC particles were observed uniformly distributing throughout the composites, and most of them were located within the matrix grains. Because SiC particles located within ZrO2 grains influenced the phase transformation of ZrO2, the sintering of nanocomposites, which controlled grain size and transformable ZrO2 amount, become important to get high performance. The strength of 80 wt% Al2O3–15 wt% ZrO2–5 wt% SiC nanocomposites was 555 MPa, and toughness was 3·8 MPa m1/2, which were higher than those of monolithic Al2O3 ceramics. ©  相似文献   

11.
《Ceramics International》2023,49(6):8993-8999
The function of ceramic coating is closely related to the construction technology and the quality of ceramic powders. Generally, Al2O3–ZrO2 powders are rapidly sprayed on the material surface at high temperatures to obtain better performance. Improving the quality of Al2O3–ZrO2 powders can make them more widely used in ceramic coating. In this paper, microwave sintering was used to enhance the sintering process of the powders, and the effect of sintering time on the microstructure, properties, and stability of Al2O3–ZrO2 powders was investigated. The results proved that microwave heating could improve the crystallinity and stability of the samples. At 900 °C, the tetragonal phase content in samples with different sintering times were 63.05%, 63.25%, 62.39%, and 63.22%, respectively. The average particle sizes obtained by Gaussian fitting are 1.04 μm, 0.83 μm, 0.88 μm, 0.86 μm, respectively. The Gaussian fitting particle size data was consistent with the normal distribution. Compared with the particle size of raw material (1.10 μm), the particles were refined, and the dispersion effect was noticeable. Therefore, the best sintering time for microwave sintering Al2O3 stabilized zirconia was 2 h. This paper aims to provide reasonable data support for improving the preparation of high-quality Al2O3-PSZ ceramic powders and to guide the industrial production of Al2O3-PSZ powders.  相似文献   

12.
Al2O3–ZrO2 (AZx), with 25 mol% ZrO2 content, was prepared using the co-precipitation method. Synthesized powders were characterized by thermal reaction using a differential thermal analysis technique (TG–DTA) and were investigated by phase formation using X-ray diffraction. It indicated that the reaction occurred at 850 °C; cubic (c)-ZrO2 phase and Al2O3 were obtained. By increasing temperature to 1100 °C, tetragonal (t)-ZrO2 phase was detected. The Al2O3–25 mol% ZrO2 was sintered for 2 h in the temperature range of between 1300 and 1600 °C. The majority phases of ceramics were m-ZrO2 and α-Al2O3, although a t-ZrO2 phase also appeared as a minor phase and decreased with higher temperature. Moreover, morphology and particle size evolution have been determined via the SEM technique. SEM showed that the particles of powder are agglomerated and basically irregular in shape. An SEM micrograph of ceramics exhibits uniform microstructure without abnormal grain growth.  相似文献   

13.
ABSTRACT

Al2O3–SiC composite powders were prepared from kyanite tailings mixed with 20% excess carbon coke via carbothermal reduction (CR) reaction. The optimised synthesis condition for synthesising Al2O3–SiC composite powders was at 1600°C for 6?h. The equilibrium relationship curves of the condensed phases were presented and the temperature dependence of the phase composition was also studied. The results show that irregular Al2O3 and SiC grains first formed at 1500°C, and the elements C, O, Al, and Si randomly distributed in the each crystal particles. The amount of Al2O3–SiC composites increased with the increasing synthesis temperature and reaction time. Finally, Al2O3–SiC composite bulk materials were further prepared by pressureless sintering using the synthesised Al2O3–SiC composite powders as raw materials, and their mechanical properties were investigated in detail. All these results indicate that the CR method can offer a niche application for the development of kyanite tailings.  相似文献   

14.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

15.
A series of Al2O3–ZrO2 composite supported NiMo catalysts with various ZrO2 contents were prepared. Several techniques including XRD, SEM, N2 physisorption, H2-TPR, and UV–vis DRS were used for typical physico-chemical properties characterization of the ZrO2–Al2O3 composite supports and their NiMo/ZrO2–Al2O3 catalysts. The test results showed that the composite supports prepared by the chemical precipitation method existed as amorphous phase in the samples with insufficient contents of ZrO2, and the incorporation of ZrO2 into supports provided a better dispersion of NiMo species, which made their reductions become easier. The pyridine-adsorbed FT-IR results indicated that the Lewis acid sites of catalysts increased significantly by the introduction of ZrO2 into the supports. The activities of these catalysts for diesel oil hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) were evaluated in a high pressure micro-reactor system. The results showed that the ZrO2–Al2O3-supported NiMo catalysts with suitable ZrO2 contents exhibited much higher catalytic activities than that of Al2O3-supported one, and when the ZrO2 contents were 15% and 5%, the NiMo/Al2O3–ZrO2 catalysts presented the highest HDS and HDN activities, respectively.  相似文献   

16.
In this study, fine Y2O3–MgO composite nanopowders were synthesized via the sol–gel method. Dense Y2O3–MgO composite ceramics were fabricated by pre-sintering the green body in air at different temperatures for 1 h and then subjecting the sintered bodies to hot isostatic pressing at 1300°C for 1 h. The effects of pre-sintering temperature on the microstructural, mechanical, and optical properties of the resulting ceramics were studied. The average grain size of the ceramics was increased, whereas their hardness and fracture toughness were decreased with increasing pre-sintering temperature. A maximum fracture toughness of 1.42 MPa·m1/2 and Vickers hardness of 10.4 GPa were obtained. The average flexural strength of the ceramics was 411 MPa at room temperature and reached 361 MPa at 600°C. A transmittance of 84% in the 3–5 µm region was obtained when the composite ceramics were sintered at 1400°C. Moreover, a transmittance of 76% in the 3–5 µm region was obtained at 500°C.  相似文献   

17.
《Ceramics International》2022,48(6):7512-7521
Zirconia ceramic is a significant structural material, but its use under some extreme circumstances is limited by its mechanical properties. In this work, SiC particles (SiCp) were added into alumina toughened zirconia ceramics to prepare ZrO2–Al2O3-SiCp ceramics with high performance by using oscillatory pressure sintering (OPS). Results showed that the best OPS temperature of 1600 °C was obtained, and the optimal SiCp particle size and content were 200 nm and 10 vol% respectively. Under these conditions, the specimen exhibited higher mechanical properties including Vickers hardness of 15.43 GPa, bending strength of 1162 MPa and fracture toughness of 6.36 MPa m1/2. Moreover, it was found that the atomic matching between ZrO2/SiCp, Al2O3/SiCp, and ZrO2/Al2O3 was much higher, showing the coherent interface relationship. Therefore, it was favorable for enhanced mechanical properties of as-prepared ZrO2–Al2O3-SiCp ceramics.  相似文献   

18.
《Ceramics International》2022,48(20):29882-29891
A simple strategy for preparing MgO–Al2O3–CaO-based porous ceramics (MACPC) with high strength and ultralow thermal conductivity has been proposed in this work based on the raw material of phosphorus tailings. The effects of phosphorus tailings content, carbon black addition and heat treatment temperature on the properties of MACPC were studied, and their pore-forming mechanism during sintering was revealed. The results showed that the main phase composition of MACPC was magnesia alumina spinel and calcium aluminate after sintering at 1225 °C. Furthermore, the MACPC exhibited excellent comprehensive properties when 60 wt% phosphorus tailings and 40 wt% alumina were added, whose apparent porosity was 62.8%, cold compressive strength was 14.8 MPa, and the thermal conductivity was 0.106 W/(m·K) at 800 °C. The synchronously enhanced strength and thermal insulation properties of MACPC were related to the formation of uniformly distributed micropores (<2 μm) and passages in the matrix, which originated from the decomposition of phosphorus tailings and the burnt out of carbon black during the sintering process. The preparation of MACPC with high temperature resistance and excellent mechanical and thermal insulation properties with the raw material of phosphorus tailings provided an effective method for the high-value utilization of phosphorus tailings.  相似文献   

19.
《Ceramics International》2020,46(7):8682-8688
Digital Light Processing (DLP) is a promising approach to fabricate delicate ceramic components with high-fidelity structural features. In this work, the alumina and zirconia/alumina ceramic suspensions with low viscosity and high solid loading (40 vol%) were prepared specifically for DLP 3D printing. After debinding and sintering, the final parts were obtained without any defects. The surface morphologies and mechanical properties of alumina (Al2O3) and zirconia toughened alumina (ZTA) composites were investigated and the results showed that the final parts exhibited high relative densities and good interlayer combination at the sintering temperature of 1600 °C. Comparing with the Al2O3, the ZTA composites exhibited significantly enhanced density (99.4%), bending strength (516.7 MPa) and indentation fracture toughness (7.76 MPa m1/2).  相似文献   

20.
We investigated the sintering behavior of Cr2O3–Al2O3 ceramic materials. In our observation of the isothermal shrinkage behavior of Cr2O3–Al2O3 ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al2O3 single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO2, (the compound chosen to accelerate the diffusion of cations) to Cr2O3–Al2O3, the sintering behavior was accelerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号