首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with ecological phosphate and silicate glasses that belong to the oxide systems: Li2O-MgO-P2O5, Li2O-CaO-P2O5, Li2O-MgO-P2O5-Fe2O3; Li2O-CaO-P2O5-Fe2O3 and SiO2-R2O-R′O (R = Na, K; R′ = Mg, Ca), the last system contains certain amounts of ZrO2, ZnO, TiO2. These ecological glasses do not contain toxic substances as BaO, PbO, As2O3, As2O5, fluorine, CdS, CdSe and they have applications as regards the retention and counteracting action of the harmful compounds resulted from the nuclear plants. The replacement of MgO by CaO leads to an insignificant increasing of the thermal expansion index and a slight decreasing of the characteristic temperatures, except the softening point where the effect is opposite. Adding of iron oxide in the phosphate glass composition causes the increasing of characteristic temperatures and the decreasing of thermal expansion index, both in MgO and CaO-containing phosphate glasses. The ecological silicate glasses are used as opal glasses free of fluorine as well as for lead-free crystal glass (CFP) where BaO and PbO are replaced by non-toxic oxides as K2O, MgO, ZrO2, and TiO2. The paper presents different glass compositions and the technological parameters to prepare the ecological glass samples. Both ecological phosphate and silicate glasses have been characterized as regards the characteristic temperatures (vitreous transition point, low and high annealing points, softening point) and the thermal expansion coefficient. This study presents the changes of the thermal parameters when CaO replaces MgO in phosphate glass samples and the role of iron oxide in the vitreous network. In the case of silicate glasses, the viscosity and wetting angle dependency of temperature are presented. The elemental analysis of the ecological glasses was made by XPS (X-ray photoelectron spectroscopy) which also put in evidence the iron species from the vitreous network.  相似文献   

2.
Using the transient hot‐wire method, the thermal conductivity properties of the molten Li2O–B2O3 and K2O–B2O3 systems were measured. The thermal conductivity increases with decreasing the temperature due to the borate structure change. In addition, calculations of the one‐dimensional Debye temperature and the phonon mean free paths as a function of temperature of the alkali borate systems were made. At a fixed temperature of 1273 K, the effect of the alkali oxide concentration on the thermal conductivity was evaluated. Within a range of 10–30 mol% Li2O (or K2O), a positive relationship between the thermal conductivity and 4‐coordinate boron was obtained. However, below 10 mol% Li2O (or K2O), the change in the intermediate‐range order of the borate structure had a more dominant effect on the thermal conductivity. Finally, the effect of cations on the thermal conductivity in the various molten R2O–B2O3 (R=Li, Na and K) systems was considered. Depending on the type of cation, the change in the ionization potential had an effect on the thermal conductivity and also resulted in a change in the bond strength.  相似文献   

3.
Engineering borate glass structure by simple compositional modification is essential to meet the particular demands from both industrial and photonic research communities. In this article, we demonstrate how the mixing of Li2O with Na2O, K2O, or Cs2O influences the relative abundance of 3- and 4-coordinated borons in the glass network, as exhibited by nuclear magnetic resonance (NMR) and Raman spectra. A systematic study is given of the alkali mixing effect on the glass properties including: glass transition temperature, microhardness, density, refractive index, and particularly the near-infrared photoluminescence properties (eg, bandwidth and lifetime) of Er3+ which has been barely studied in mixed alkali borate glasses. It is interesting to note that the glass transition temperature, refractive index and emission lifetime of Er3+ manifest mixed alkali effect, in sharp contrast with microhardness, density, and emission bandwidth which vary monotonically upon the alkali mixing. The possible causes for the differences are discussed in the light of the compositional dependence of boron species and nonbridging oxygen upon alkali mixing.  相似文献   

4.
A zinc borate glass system of composition xNa2O-(58-x)B2O3-40ZnO-2Nd2O3(where x = 0, 5, 10, 15, 20 and 25) has been prepared using the melt quenching method. The effect of Na2O on the crystal structure, density, molar volume and mechanical properties was investigated. X-ray diffraction analysis confirmed the amorphous nature of the prepared glass. The density and molar volume followed the normal behavior of a glass system. Ultrasonic non-destructive testing was employed for measuring the mechanical properties of the zinc borate glass system. The values of Young’s modulus and the Poisson ratio decreased with increasing the Na + concentration. Meanwhile, the microhardness, Debye temperature and acoustic impedance were diminished with increasing the Na + ion content. The results showed that the ultrasonic non destructive test measured the mechanical properties of the glass with similar accuracy to the Vickers microhardness. Such tested properties can be applied for silicate and non-silicate glasses.  相似文献   

5.
Understanding of the extent of cation disorder and its effect on the properties in glasses and melts is among the fundamental puzzles in glass sciences, materials sciences, physical chemistry, and geochemistry. Particularly, the nature of chemical ordering in mixed‐cation silicate glasses is not fully understood. The Li–Ba silicate glass with significant difference in the ionic radii of network‐modifying cations (~0.59 Å) is an ideal system for revealing unknown details of the effect of network modifiers on the extent of mixing and their contribution to the cation mobility. These glasses also find potential application as energy and battery materials. Here, we report the detailed atomic environments and the extent of cation mixing in Li–Ba silicate glasses with varying XBaO [BaO/(Li2O + BaO)] using high‐resolution solid‐state nuclear magnetic resonance (NMR) spectroscopy. The first 17O MAS and 3QMAS NMR spectra for Li–Ba silicate glasses reveal the well‐resolved peaks due to bridging oxygen (Si–O–Si) and those of the nonbridging oxygens including Li–O–Si and mixed {Li, Ba}–O–Si. The fraction of Li–O–Si decreases with an increase in XBaO and is less than that predicted by a random Li–Ba distribution. The result demonstrates a nonrandom distribution of Li+ and Ba+ around NBOs characterized by a prevalence of the dissimilar Li–Ba pair. Considering the previously reported experimental results on chemical ordering in other mixed‐cation silicate glasses, the current results reveal a hierarchy in the degree of chemical order that increases with an increase in difference in ionic radius of the cation in the glasses [e.g., K–Mg (~0.66 Å) ≈Ba–Mg (~0.63 Å) ≈Li–Ba (~0.59 Å) > Na–Ba (~0.33 Å) > Na–Ca (~0.02 Å)]. The 7Li MAS NMR spectra of the Li–Ba silicate glasses show that the peak maximum increases with increasing XBaO, suggesting that the average Li coordination number and thus Li–O distance decrease slightly with increasing XBaO, potentially leading to an increased activation energy barrier for Li diffusion. Current experimental results confirm that the degree of chemical ordering due to a large difference in ionic radii controls the transport properties of the mixed‐cation silicate glasses.  相似文献   

6.
《Ceramics International》2023,49(16):27201-27213
A glass system based on the Na2O/B2O3-doped CrO3 borosilicate has been prepared by the melt quenching technique. The structure, color, optical absorbance and ligand field parameters were investigated for a wide range of Na2O additives (20–60 mol%). All X-ray photoelectron spectroscopy (XPS) profiles were used to study the chemical shift states of the glass-constituting elements. Fourier transform infrared (FTIR) analyses explored the internal structure and subnetwork units. Furthermore, from the FTIR results, we concluded the transformation of trigonal borate units (BO3) to tetrahedral borate units (BO4) and the possibility of transformation from B3-O-Si linkages to B4-O-Si linkages. Despite the fixed CrO3 content, the doped glasses showed a color transition from green to yellow with additional Na2O content. The increased intensity of the band at 451–427 nm and the decreased intensity of the band at 619–627 nm are the main reasons for this color transformation. The optical absorption spectra confirmed the existence of Cr3+ and Cr6+ states. A decreasing behavior for the crystal field splitting (10Dq) and an increasing behavior for Racah parameter (B) were obtained with further Na2O additives. The decreasing behavior of 10Dq was attributed to reduced oxygen concentrations with more Na2O/B2O3 substitutions. The increasing behavior of B reflects the tendency of the bond between the Cr cations and their oxygen ligands towards an ionic nature. Moreover, the Dq/B values indicated that Cr3+ cations are in high-field positions for the glass sample containing 20 mol% Na2O, and Cr3+ cations are in intermediate field positions for the glass sample containing 30 mol% Na2O. However, for the glass samples doped with 40, 50 and 60 mol% Na2O glass samples, Cr3+-cations are in weak field positions. These results of (Dq/B) recommend the glass sample doped with 20 mol% Na2O for tunable laser applications.  相似文献   

7.
This study employed thermal poling at 200°C as a means to modify the surface mechanical properties of soda lime silica (SLS) glass. SLS float glass panels were allowed to react with molecules constituting ambient air (H2O, O2, N2) while sodium ions were depleted from the surface region through diffusion into the bulk under an anodic potential. A sample poled in inert gas (Ar) was used for comparison. Systematic analyses of the chemical composition, thickness, silicate network, trapped molecular species, and hydrous species in the sodium‐depleted layers revealed correlations between subsurface structural changes and mechanical properties such as hardness, elastic modulus, and fracture toughness. A silica‐like structure was created in the inert gas environment through restructuring of Si–O–Si bonds at 200°C in the Na‐depleted zone; this occurred far below Tg. This silica‐like surface also showed enhancement of hardness comparable to that of pure silica glass. The anodic thermal poling condition was found so reactive that O2 and N2 species can be incorporated into the glass, which also alters the glass structure and mechanical properties. In the case of the anodic surfaces prepared in a humid environment, the glass showed an improved resistance against crack formation, which implies that abundant hydrous species incorporated during thermal poling could be beneficial to improve the toughness.  相似文献   

8.
Six compositions of 1 mol % Dy3+-doped multicomponent borate glasses containing single Li2O, Na2O, K2O and mixed Li2O–Na2O, Li2O–K2O, and Na2O–K2O oxides have been synthesized by well-known melt-quenching technique. Following the measured density and refractive index values, various physical parameters were estimated for all the glass samples and differences in them are correlated with structural changes. To explore optical properties like absorption edge (λcut-off), optical band gap energy (Eopt), and Urbach energy (ΔE), optical absorption spectra were recorded for all the glasses. The Eg has been calculated using Davis and Mott theory for direct allowed, and indirect allowed transitions and the results were reported. The Eg values are also estimated using absorption spectrum fitting (ASF) method. The optical parameters variations have also been associated with the structural changes occurring in the glasses with different alkali/mixed alkali oxides content presence. The shielding properties of the prepared glasses were studied in terms of effective atomic numbers (Zeff), mean free path (MFP), half value layer (HVL) and macroscopic effective removal cross-section (ΣR). From these results, it was found that Potassium (K) glass shows superior gamma ray shielding properties due to a higher value of Zeff and lower values of both MFP and HVL. These results indicate that the prepared glasses might be utilized in place of some common shielding materials to shield γ-rays and neutrons.  相似文献   

9.
《Ceramics International》2023,49(5):7424-7437
The current work presents and discusses the findings of a comprehensive study on the structural, chemical and thermal properties of SrO and CuO incorporated SiO2–CaO–Na2O–P2O5 amorphous silicate glass with a novel composition. Here, fundamental features (experimental density, oxygen density, and hardness) of all glasses were determined and chemical as well as phase composition of the glasses was verified with XRF and XRD, respectively. Moreover, the thermal behavior (viscos flow and crystallization kinetics) of amorphous silicate glass was investigated by non-isothermal methods using DTA analysis. The activation energies of glass transition (Eg) were calculated in the range of 546–1115 kJ/mol by Kissinger method, whereas the activation energies of crystallization (Ec) were calculated in the range of 164–270 kJ/mol by three different methods (Kissinger, Ozawa, Yinnon and Uhlmann). Avrami exponent (n) values ranged from 1.17 to 3.28 demonstrated that amorphous silicate glasses have different crystallization mechanism. Working temperature, which is one of the parameters indicating glass stability, increased with the incorporation of Sr and Cu from 187 °C to 245 °C. The initial dissolution measurement has been applied to study the degradability behavior of Sr and Cu incorporated amorphous glasses in vitro. Quantitative evaluation of Si4+ (0.156–0.373 kV), Ca2+ (0.043–0.332 kV), Na+ (0.044–0.329 kV), P5+ (0.057–0.289 kV), Sr2+ (0.134–0.385 kV), and Cu2+ (0.090–0.203 kV) depending on the ion activation energy (Ea-ion) and ion concentration at different temperature values (24, 37 and 55 °C) was performed in contact with Tris-HCl solution by ICP-OES analysis. The results revealed that investigated glasses were degradable and incorporation of Sr and Cu affected the glass initial dissolution. Overall, investigated glasses are suitable for various application such as hot-working production, glass-ceramic manufacturing, and glass or glass-ceramic scaffolds fabrication, due to wide working temperature ranges and high crystallization tendencies of the developed glasses.  相似文献   

10.
Bismuth (Bi)-doped glasses and fibers are of current interest as promising active media for new fiber lasers and amplifiers due to their 800-1700 nm near-infrared (NIR) emission. However, the optically active Bi centers in silica are easily volatilized during high-temperature fiber drawing, which results in low Bi doping concentration and low gain NIR luminescence. Here, we explored the glass-forming region in a model glass system of sodium tantalum silicate (Na2O-Ta2O5-SiO2) glass and attained suitable glass host for enhancing Bi NIR emission, right followed by detailed analysis on optical and structural characterization. Glass-forming region roughly lies in where Ta2O5 ≤ 30 mol%, SiO2 ≥ 40 mol%, and Na2O ≤ 40 mol%. Not only is glass-forming ability improved but also Bi NIR emission is enhanced (~60 times) by the introduction of Ta into glass network. Dissociated Na cations are restricted beside Ta, the high-field-strength element, so that the negative impacts of Na cations on glass formation and Bi NIR emission are weakened, which is responsible for the highly enhanced Bi NIR emission. This work helps us understand the glass-forming of tantalum silicate glass systems and luminescent behaviors of Bi. Hopefully, it could contribute to designing the Bi-doped laser glasses and high gain fibers with stable luminescent properties in future.  相似文献   

11.
Ternary Na2O–Fe2O3–P2O5 (NFP) glasses with varying Na2O/Fe2O3, Na2O/P2O5, and Fe2O3/P2O5 ratios were prepared. The properties and crystallization tendencies were systemically investigated. It is shown that both density and chemical stability of the glass increase with Fe2O3. In contrast the Na2O/P2O5 ratio has little effect on the glass properties for a fixed Fe2O3 content. The crystallization behavior of the glasses was analyzed by DTA and XRD. Unlike Li2O–Fe2O3–P2O5 glasses NFP glasses were found to be stable against crystallization. 15Na2O–27Fe2O3–58P2O5 glass was found to have the highest chemical stability among the studied NFP samples; the influence of TiO2, ZrO2 on crystallization in this composition was studied. It is found that addition of 3.4 mol% TiO2 or 2.2 mol% ZrO2 had little effect on the crystallization behavior of this glass. However, when the amounts of TiO2 or ZrO2 were increased to 8.4 or 5.5 mol% respectively the glass readily devitrified. Furthermore the addition of fluorine (introduced by replacing Na2CO3 with NaF in the glass batch) leads to amorphous glasses which could be crystallized to form NaFeP2O7 upon controlled thermal treatment. With increasing NaF additions the activation emergy for crystallization decreased from 428 to 381 kJ/mol.  相似文献   

12.
The effect of increasing MgO/Na2O replacements (on mole basis) on the crystallization characteristics of glasses based on the CaO–Na2O(MgO)–P2O5–CaF2–SiO2 system were studied by using DTA, XRD, and SEM. The crystallization characteristics of the glasses, the type of crystalline phases formed and the resulting microstructure were investigated. The main crystalline phases formed after controlled heat-treatment of the base glass were diopside, wollastonite solid solution, fluoroapatite and sodium calcium silicate phases. The increase of MgO at the expense of Na2O led to decrease the amount of sodium calcium silicate phase. The Vicker's microhardness values (5837–3362 MPa) of the resulting glass–ceramics were markedly improved by increasing the MgO-content in the glasses. The obtained data were correlated to the nature and concentration of the crystalline phases formed and the resulting microstructure.  相似文献   

13.
Tantalum silicate glasses serve as laser host materials to take advantage of their high refractive index and the ability to tailor their physical properties in the design of high-performance photonic and photoelectric components. However, successful attainment of feature control in tantalum-doped materials remains a longstanding problem due to the limited understanding of local structure around the tantalum ions, a problem that lies at the heart of predicting the micro- and macroscopic properties of these glasses. Herein, we present a novel approach for predicting the local structural environments in tantalum silicate glass based on a phase diagram approach. The phase relations and glass formation region of Li2O–Ta2O5–SiO2 ternary systems are explored to calculate the structure and additive physical properties of lithium tantalum silicate glasses. These measured and calculated results are in good quantitative agreement, indicating that the phase diagram approach can be applied broadly to Li2O–Ta2O5–SiO2 ternary glass systems. Using the phase diagram approach, the local structure of tantalum can be directly obtained. Each Ta atom is surrounded by six atoms, and its polyhedron, the TaO6 octahedron, bonds through oxygen to Li and Ta. As a network modifier, Ta5+ depolymerizes the silicate glass structure by modulating the local structure of lithium atoms in Li2O–Ta2O5–SiO2 ternary glass system. The compositional dependence of structure in lithium tantalum silicate glasses is quantitatively determined based on the structure of the nearest neighbor congruent compound through the lever rule. These findings offer a precise prediction of tantalum silicate glass properties with quantitative control over local structural environment of the disordered materials.  相似文献   

14.
Sulfur trioxide (SO3) additions, up to 3.0 mass%, were systematically investigated for effects on the physical properties of sodium borosilicate glass melted in air, with a sulfur-free composition of 50SiO2–10Al2O3–12B2O3–21Na2O–7CaO (mass%). Solubility measurements, using electron microscopy chemical analysis, determined the maximum loading to be ~1.2 mass% SO3. It was found that measured sulfur (here as sulfate) additions up to 1.18 mass% increased the glass transition temperature by 3%, thermal diffusivity by 11%, heat capacity by 10%, and thermal conductivity by 20%, and decreased the mass density by 1%. Structural analysis, performed with Raman spectroscopy, indicated that the borosilicate network polymerized with sulfur additions up to 3.0 mass%, presumably due to Na2O being required to charge compensate the ionic additions, thus becoming unavailable to form non-bridging oxygen in the silicate network. It is postulated that this increased cross-linking of the borosilicate backbone led to a structure with higher dimensionality and average bond energy. This increased the mean free paths and vibration frequency of the phonons, which resulted in the observed increase in thermal properties.  相似文献   

15.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture.  相似文献   

16.
It is shown that modeling the first oxygen-oxygen peak in the neutron correlation function of a glass enables structural information about other correlations to be obtained, and the method is illustrated by application to a sodium silicate glass. The first O–O coordination number can be calculated from network theory, and sodium silicate crystal structures show that the mean O–O distance can be calculated from the Si–O distance, despite the distortion of the SiO4 tetrahedra. Modeling the O–O peak for a sodium silicate glass allows the Na-O bond length distribution to be determined. For a binary glass with 42.5 mol% Na2O, it is found that the Na–O coordination number is 4.8(2) with an average bond length of 2.45 Å, and the Na–O bond lengths are more widely distributed than in sodium silicate crystal structures. Sodium ions are bonded mostly to non-bridging oxygens (NBOs), and the Na–NBO coordination number may be four as in crystals. Sodium ions are also bonded to a smaller number of bridging oxygens (BOs). Contrary to previous reports, it is not concluded that Na–NBO bonds are shorter than Na–BO bonds, but instead that the Na–BO distribution is relatively narrow, whilst the Na–NBO distribution extends to both shorter and longer distance. The broad distribution of Na–O bond lengths arises from a relatively broad distribution of Na–NBO bond valences, subject to the overall requirement of charge balance.  相似文献   

17.
The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics (GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li2O molar ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were produced by conventional melt-quenching technique along with a bicomponent glass with a composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and crystallization of glass powder compacts.Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence of phase separation in all investigated compositions. The extent of segregation, as judged from the mean droplet diameter and the packing density of droplet phase, decreased with increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 and K2O was dominated by surface nucleation leading to crystallization of lithium metasilicate (Li2SiO3) within the temperature range of 550–900 °C. On the other hand, the glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–800 °C.Sintering and crystallization behaviour of glass powders was followed by hot stage microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from composition L23S77 demonstrated high fragility along with low flexural strength and density. The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and mechanical strength.  相似文献   

18.
Lithium and sodium aluminosilicates are important glass‐forming systems for commercial glass‐ceramics, as well as being important model systems for ion transport in battery studies. In addition, uncontrolled crystallization of LiAlSiO4 (eucryptite) in high‐Li2O compositions, analogous to the more well‐known problem of NaAlSiO4 (nepheline) crystallization, can cause concerns for long‐term chemical durability in nuclear waste glasses. To study the relationships between glass structure and crystallization, nine glasses were synthesized in the LixNa1‐xAlSiO4 series, from x = 0 to x = 1. Raman spectra, nuclear magnetic resonance (NMR) spectroscopy (Li‐7, Na‐23, Al‐27, Si‐29), and X‐ray diffraction were used to study the quenched and heat‐treated glasses. It was found that different LiAlSiO4 and NaAlSiO4 crystal phases crystallize from the glass depending on the Li/Na ratio. Raman and NMR spectra of quenched glasses suggest similar structures regardless of alkali substitution. Li‐7 and Na‐23 NMR spectra of the glass‐ceramics near the endmember compositions show evidence of several differentiable sites distinct from known LixNa1‐xAlSiO4 crystalline phases, suggesting that these measurements can reveal subtle chemical environment differences in mixed‐alkali systems, similar to what has been observed for zeolites.  相似文献   

19.
The effect of Na2O and temperature on the thermal conductivity of the Na2O–B2O3 binary system has been measured using the hot‐wire method to examine the relationship between the thermal conductivity and structure in high‐temperature melts. The thermal conductivity of the binary melt is measured from 1173 to 1473 K in the fully liquid state. The thermal conductivity slightly increases with Na2O content up to 20 wt%. Above 20 wt% Na2O, the thermal conductivity decreases with increasing Na2O. The network structure of molten glass was analyzed using Fourier transform infrared (FTIR), Raman spectroscopy, and XPS. The FTIR analysis shows that 3‐D complex borate structures, such as tri‐, tetra‐, and pentaborate are made by [BO4] tetrahedral units interconnected with 2‐D structure boroxol rings in the low Na2O region. Above 20 wt% Na2O content, nonbridged oxygen in [BO2O?] units and diborate groups increase with increase in Na2O. The same tendency is shown by the Raman spectroscopy and XPS analyses. The Raman analysis shows that boroxol rings disappeared with large [BO4] groups, such as tri‐, tetra‐, and pentaborate structures, which increase at low Na2O content. Isolated diborate groups and nonbridged oxygen in [BO2O?] units increase at high Na2O content. It can be inferred that single structure units, such as isolated diborate groups, interfere with conduction. The XPS analysis results show that free oxygen produced by the interconnection of Na2O in the borate structure does not cause significant changes to O2? in the low Na2O region, but increases the Oo and decreases the O?. Above 20 wt% Na2O, O? slightly increases and Oo shows a decreasing trend.  相似文献   

20.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号