首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reliable contact-reactive brazed joints of TC4 alloy and Ti3SiC2 ceramic were obtained using a Cu interlayer. The interfacial microstructure of a TC4/Ti3SiC2 joint brazed at 920?°C for 10?min was TC4/Ti2Cu +?α-Ti +?β-Ti/Ti2Cu +?AlCu2Ti +?Ti5Si3/Ti5Si3 +?Ti5Si4/Ti3SiC2. The interfacial microstructure and mechanical properties of TC4/Ti3SiC2 joints brazed at different temperatures were investigated. With increasing temperature, the shear strength of the brazed joints first increased and then decreased. The maximum shear strength was 132?±?8?MPa, and the corresponding fracture occurred along the Ti–Si reaction layer and the Ti3SiC2 substrate adjacent to the Ti–Si reaction layer. The microhardness test also demonstrated that the Ti–Si reaction layer possessed the highest microhardness, 812?±?22 HV. The Ti-Si reaction layer was the weakest part of the brazed joints. To eliminate the Ti-Si reaction layer and improve the mechanical properties of TC4/Ti3SiC2 brazed joints, a 40-μm Ni layer was plated on the surface of the Ti3SiC2 ceramic before brazing. The results showed that the Ti–Si reaction layer that formed adjacent to the Ti3SiC2 ceramic was thin and intermittent. Moreover, the interface between the Ti3SiC2 ceramic and the TC4 alloy became jagged. The shear strength of the TC4/nickel-plated Ti3SiC2 brazed joints improved to 148?±?8?MPa; the corresponding fracture occurred mainly in the Ti3SiC2 ceramic and only a small portion of the fracture occurred in the brazing seam.  相似文献   

2.
In the present study, diffusion bonding of two dissimilar materials TC6 and copper alloy was investigated in vacuum chamber by directly bonding and using Ni foil as interlayer. Interface quality of the joints was evaluated by mechanical property and microstructure. The maximum shear strength of directly bonding was found to be 64 MPa for the speciemen bonded at 850 °C, 5 MPa for 30 min; and the maximum shear strength with Ni foil interlayer was 113 MPa under the same bonding parameters. The bonding interfaces and fracture surfaces were analyzed by energy disperse spectrometer, scanning electron microscopy and X-ray diffraction. The results show that the diffusion region of directly bonding specimen generated several IMCs (Ti2Cu and Ti5CuSn3, etc.). Fracture morphology showed that brittle fracture present at the Ti5CuSn3 IMCs, which was the weak point of the joint. While the diffusion zone of the specimen with Ni foil interlayer consists of various phase including Ti2Ni, TiNi, TiNi3 at TC6 side, and Cu-Ni solid solution at ZQSn11-4-3 side, and fracture surface of joint present a mixture of brittle and ductile characteristics, and fracture initiated at the TiNi3/Ni interface.  相似文献   

3.
In this study, diffusion bonding of WC-Co cemented carbides to a tool steel was realized utilizing Ni foils as the interlayer in a vacuum. The effects of bonding temperature and Ni interlayer thickness on interfacial microstructure and mechanical properties of the joint were studied. The research results revealed that brittle phases and cracks were suppressed due to the Ni interlayer. Moreover, the coherent relationship of [1 2 0]WC//[1 0 1]Ni and (0 0 1)WC//(0 2 0)Ni was observed at the interface of WC grains and Ni interlayer, and it greatly contributed to the bonding strength of WC-Co/steel joint. As the bonding temperature increased, the atoms diffused sufficiently, and the interfacial defect dimensions decreased. Then, the Ni interlayer was transferred to solid solutions, resulting in the high shear strength of the bonded joint. The optimum shear strength (444.7 MPa) was achieved when the bonding was carried out at 1050 °C for 1 h with a 4-μm-thick Ni interlayer. The cracks were propagated in the interlayer and the WC-Co substrate near the bonding seam.  相似文献   

4.
《Ceramics International》2017,43(13):9738-9745
Porous Si3N4 ceramic was firstly joined to TiAl alloy using an AgCu filler alloy. The effects of brazing temperature and holding time on the interfacial microstructure and mechanical properties of porous-Si3N4/AgCu/TiAl joints were studied. The typical interfacial microstructure of joints brazed at 880 °C for 15 min was TiAl/AlCu2Ti/Ag-Cu eutectic/penetration layer (Ti5Si3+TiN, Si3N4, Ag (s, s), Cu (s, s))/porous-Si3N4. The penetration layer was formed firstly in the brazing process. With increasing brazing temperature and time, the thickness of the penetration layer increased. A large amount of element Ti was consumed in the penetration layer which suppressed the formation and growth of other intermetallic compounds. The penetration layer led the fracture to propagate in the porous Si3N4 ceramic substrate. The maximum shear strength was ~13.56 MPa.  相似文献   

5.
In present study, homogeneous joint of ZrCx ceramic was achieved by diffusion bonding using Ti/Ta/Ti as the interlayer. The effect of bonding temperature and time on the microstructure and mechanical property of the joints was uncovered. The homogeneous joints can be formed at 1400 °C for 2 h and at 1500 °C for 1 h, respectively. The Ti/Ta/Ti interlayer prefers to form Ti-Ta solid solutions rather than to form carbides with ZrCx ceramic during the bonding process, which is more readily to be dissolved with the base ceramic, thus contributing to the formation of the homogeneous joints. The mechanical property of the homogeneous joints can be comparable to that of the base ceramics due to the similar composition of the joint with the base ceramics. The unique microstructure feature and mechanical property of the homogeneous joints illustrate the great potential of our method for joining transition metal carbides.  相似文献   

6.
《Ceramics International》2016,42(15):16619-16625
Brazing SiO2f/SiO2 ceramics to TC4 is often associated with the problems of excessive Ti from the dissolution of TC4 and high residual stress, which results in low-strength joints. To overcome these problems, here we put forward an effective method by introducing Cu foam as interlayer to obtain high-strength joints of SiO2f/SiO2-TC4. The effect of Cu foam on the microstructure and mechanical properties of brazed joints was investigated. Cu foam can consume Ti from TC4 and inhibit forming too many brittle compounds at the SiO2f/SiO2 side. Furthermore, Cu foam can react with Ti, forming the dispersed homogeneous distribution of fine-grained Ti-Cu compounds in the brazing seam, due to its unique 3D porous structure. The formation and distribution of fine-grained Ti-Cu compounds at the brazing seam could significantly help to reduce the residual stress and reinforce the mechanical properties of the joint. Maximum shear strength of 59.6 MPa is approached.  相似文献   

7.
ZrC-SiC ceramic and TC4 alloy were brazed using AgCuTi alloy. The microstructure and mechanical property of the joints obtained at different brazing parameters were investigated and the reaction mechanism was analyzed. The results indicated that the Ti from the AgCuTi and TC4 reacted with the ZrC in the ceramic to form different shaped TiC crystals adjacent to the ZrC-SiC ceramic. With the increase of brazing temperature or extending of holding time, the dissolution of TC4 became vigorous and much Ti dissolved into the braze alloy. As a result, Ti reacted with the Cu from AgCuTi alloy to form a series of Cu-Ti compounds in the brazing seam due to the strong affinity between Cu and Ti. The Cu-Ti compounds made the hardness and brittleness of brazing seam increase, which deteriorated the property of the brazed joint. The maximum shear strength was 39 MPa obtained at 810 °C for 5 min.  相似文献   

8.
9.
《Ceramics International》2022,48(4):4484-4496
Ti3SiC2 ceramic and SUS430 stainless steel (SS) were successfully joined by a solid diffusion bonding technique using Ni interlayers. Diffusion bonding was performed in the temperature range of 850 °C–1100 °C under vacuum. The interfacial reaction phase, morphology evolution, growth kinetics and tensile strength were systematically investigated. In all cases, the inter-diffusion and reaction between Ti3SiC2 and SS can be effectively prevented by Ni foil, and the good transition in the joint benefit to the sound joining. The interface in the joints adjacent to SS matrix was composed of γ solid solution and a small amount of σ intermetallic compound. The compounds in the Ni/Ti3SiC2 interface was Ni/Ni(Si)/Ni31Si12 + Ni16Ti6Si7 + Ti3SiC2 + TiCx/Ti2Ni + Ti3SiC2 + TiCx/Ti3SiC2, which formed by the inter-diffusion and chemical reactions between Si and Ni atoms. The diffusion mechanism and reaction mechanism were interrelated, and decided the width of each reaction zones. Furthermore, the diffusion activation energy was 113 kJ/mol. The tensile strength increases with increasing the bonding temperature. The minimum and maximum strength of 32.3 MPa and 88.8 MPa were obtained from SUS430/Ni/Ti3SiC2 joints, which bonding experiments were carried out at 850 °C and 1100 °C, respectively.  相似文献   

10.
Flash joining of CVD-SiC coated Cf/SiC samples with a Ti interlayer was achieved using a Spark Plasma Sintering machine. The influence of different heating powers and discharge times were investigated. The sample flash joined at a maximum heating power of 2.2 kW (peak electric current of 370 A) within 7 s showed the highest apparent shear strength of 31.4 MPa, which corresponds to the interlaminar shear strength of the composites. A maximum joining temperature of ∼1237 °C was reached during the flash joining. An extremely rapid heating rate of 9600 °C/min combined with a very short processing time hindered any reaction between the CVD-SiC coating and the Ti interlayer. The formation of a metallic joint (Ti based) in the absence of any detectable reaction phase is proposed as a new joining mechanism. For a conventionally joined SPS sample, the formation of titanium silicide phases inhibited the formation of a bond.  相似文献   

11.
《Ceramics International》2016,42(11):12815-12824
Reliable brazing of a zirconia ceramic and pure niobium was achieved by using two Ag-based active filler metals, Ag-Cu-Ti and Ag-Cu-Ti+Mo. The effects of brazing temperature, holding time, and Mo content on the interfacial microstructure and mechanical properties of ZrO2/Nb joints were investigated. Double reaction layers of TiO and Ti3Cu3O formed adjacent to the ZrO2 ceramic, whereas TiCu4+Ti2Cu3+TiCu compounds appeared in the brazing interlayer. With increasing brazing temperature and time, the thickness of the Ti3Cu3O layer increased with consumption of the TiO layer, and the total thickness of the reaction layers increased slightly. Meanwhile, the blocky Ti-Cu compounds in the brazing interlayer tended to accumulate and grow. This microstructural evolution and its formation mechanism are discussed. The maximum shear strength was 157 MPa when the joints were brazed with Ag-Cu-Ti at 900 °C for 10 min. The microstructure and bonding properties of the brazed joints were significantly improved when Mo particles were added into the Ag-Cu-Ti. The shear strength reached 310 MPa for joints brazed with 8.0 wt% Mo additive, which was 97% higher than that of joints brazed with single Ag-Cu-Ti filler metal.  相似文献   

12.
SiC ceramics are successfully brazed via reactive air brazing using Ag-V2O5 fillers. The wettability of SiC ceramics by Ag-V2O5 fillers is investigated. Interfacial microstructure of SiC joints is analyzed by scanning electron microscopy and transmission electron microscopy with energy dispersive spectroscopy. Effect of the brazing filler composition on the microstructure and mechanical properties of SiC joints is studied in detail. The V2O5 from the brazing fillers is found to react intensively with SiC, and the SiO2 reaction layer with the thickness of ?7 μm is formed on the SiC surface which ensures a good wetting of the brazing filler on SiC ceramics. The brazing seam is composed of Ag and VO2 with small amount of remaining V2O5. The maximum shear strength (?58 MPa) is achieved when using the optimized brazing process (Ag-8V2O5, 1050 ℃/30 min, the loading pressure is ?20 kPa and the cooling rate is 2 ℃/min).  相似文献   

13.
《Ceramics International》2019,45(14):17258-17261
Ti3AlC2 ceramics were successfully joined with TiO2 and Nb2O5 respectively as interlayers via solid-state diffusion bonding at 1300 °C. The joints bonded with TiO2 and Nb2O5 exhibit distinct microstructures. Two continuous thin Al2O3 oxidation layers with a thickness around 1 μm were formed in the joints bonded with TiO2. Between the oxidation layers there exists a dense oxycarbide (TiC1-xOx) layer. For the joint bonded with Nb2O5, a dense bonding layer with Nb2AlC and Nb4AlC3 grains surrounded by thin Al2O3 oxidation layers at the grain boundaries were obtained. The shear strength of the final joints shows clear dependences on both the thickness and microstructure of the joints. Smaller joint thickness and the microstructure with complex phases favour for higher shear strength. Those result implies that bonding with oxides is a practical and efficient method for joining Ti3AlC2.  相似文献   

14.
To prepare large-sized and complex-shaped components, the feasibility of direct diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic (HEC) and its diffusion bonding with a metallic Ni foil was investigated, and the interfacial microstructure and mechanical properties of HEC/HEC and HEC/Ni/HEC joints were analyzed. For the direct diffusion bonding, reliable joints with a shear strength of 146 MPa could be achieved when the bonding temperature reached 1500 °C under a pressure of 30 MPa. By introducing a metallic Ni foil as the interlayer, the HEC was successfully bonded at the diffusion temperatures from 1150 °C to 1250 °C under 10 MPa through the formation of Ti2Ni compound phase. Meanwhile, the HEC(Ni) phase formed by the diffusion of Ni into HEC and Ni(s, s) bulks precipitated in the bonding transition zone. The maximum joint shear strength of 151 MPa was obtained by optimizing the Ni-foil thickness, bonding temperature, and holding time.  相似文献   

15.
Diffusion bonding is an effective technique for joining dissimilar metals. In this paper, tungsten and MA956 steel were diffusion-bonded by Spark Plasma Sintering (SPS) technique with titanium (Ti) foil as an interlayer. The bonded joints were evaluated by metallographic analysis and mechanical tests, and the results reveal that all W/Ti/MA956 joints were well bonded by efficient SPS technique. Microstructure analysis showed that W-Ti solid solution formed at W/Ti interface; reaction phases at Ti/MA956 steel interface varied with the joining temperature, e.g. intermetallics phases FeTi for 850?°C, FeTi, Fe2Ti and Cr2Ti for 900?°C and 950?°C joining temperature. The peak value of microhardness occurred at the interfaces of Ti/MA956 steel owing to the formation of intermetallic compound. All specimens of shear testing fractured at the Ti/MA956 steel interface close to MA956, and the average shear strength of joints was 182?MPa, 228?MPa and 164?MPa bonded at 850?°C, 900?°C and 950?°C respectively.  相似文献   

16.
《Ceramics International》2016,42(8):9972-9980
Ti3SiC2/Cu composites with different contents of Cu were fabricated by mechanical alloying and spark plasma sintering method. The phase composition and structure of the composites were analyzed by X-ray diffractometry and scanning electron microscopy equipped with energy dispersive spectroscopy. The mechanical and tribological properties of Ti3SiC2/Cu composites were tested and analyzed compared with monolithic Ti3SiC2 in details. The results show that the Cu leads to the decomposition of Ti3SiC2 to produce TiCx, Ti5Si3Cy, Cu3Si, and TiSi2Cz. The friction coefficient and wear rate of the composites are lower than that of monolithic Ti3SiC2, which is ascribed to the fixing effect of hard TiCx, Ti5Si3Cy, and Cu3Si to inhibit the abrasive friction and wear. However, at elevated temperatures (ranging from room temperature to 600 °C) the friction and wear of the composites are higher than those at room temperature. Plastic flowing and tribo-oxidation wear accompanied by material transference contribute to the increased friction and wear at elevated temperatures.  相似文献   

17.
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge.  相似文献   

18.
The reliable brazing of the ZTA ceramic joints was successfully obtained using Ni-Ti filler metal. The microstructure and mechanical properties of the joints brazed at different temperatures were investigated. During the process of brazing, both Al2O3 and ZrO2 in the ZTA reacted with the Ni-Ti filler, resulting in the formation of the AlNi2Ti + Ni2Ti4O reaction layer adjacent to the ZTA substrate when brazed at 1350 °C for 30 min. NiTi and Ni3Ti compounds precipitated at the center of brazing seam. When the brazing temperature increased from 1320 °C to 1380 °C, the thickness of AlNi2Ti + Ni2Ti4O layer increased gradually. As the brazing temperature varied from 1400 °C to 1450 °C, TiO was formed adjacent to the ZTA substrate, along with the reduction of Ni2Ti4O. AlNi2Ti distributed at the interface and center of brazing seam. The maximum shear strength of 152 MPa was obtained when brazed at 1420 °C for 30 min.  相似文献   

19.
《Ceramics International》2022,48(5):6116-6123
Dielectric polymer composites with conducting fillers would have great potential for diverse applications if their severe leakage loss could be addressed. In this regard, ternary composites using both ceramic and conducting materials as fillers might be an enabler for high dielectric constant and low dielectric loss. Herein, ternary composites with both Ti3C2Tx MXene conducting nanosheets and CaCu3Ti4O12 (CCTO) dielectric particles embedded in silicone rubber were studied. It was found that a ternary composite with 1.2 wt% (0.40 vol%) Ti3C2Tx MXene and 12 wt% (2.58 vol%) CCTO could provide an overall superior performance that include a high dielectric constant of 8.8, low dielectric loss of less than 0.0015, good thermal stability up to 450 °C, and excellent mechanical properties with tensile strength of 569 kPa, elastic module of 523 kPa and elongation at break of 333%. The outstanding performance is attributed to the improved uniform dispersion and good interfacial compatibility of mixed fillers in the polymer matrix, suggesting ternary composites might be a better option over their binary counterparts in preparing high performance dielectric composites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号