首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was performed to investigate the effects of a commercially available probiotic product (compound probiotic) containing Bacillus subtilis 7.0 × 109 CFU g?1, Bacillus licheniformis 3.0 × 109 CFU g?1, Lactobacillus spp. 5.0 × 108 CFU g?1 and Arthrobacter spp. 1.0 × 108 CFU g?1 on the growth performance, non‐specific immunity and protection against Vibrio harveyi infection in cobia (Rachycentron canadum). Fish were fed diets containing six graded levels of compound probiotic (0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 g kg?1) for 8 weeks. The results showed that the survival rate ranged from 81.1% to 84.4% with no significant difference among dietary treatments (P > 0.05) after feeding experiment. Dietary compound probiotic significantly increased the specific growth rate (SGR), serum lysozyme, alternative complement pathway (ACP) activity, phagocytosis percentage (PP) and respiratory burst activity of head‐kidney macrophages of cobia. Moreover, feeding of supplemented diets containing compound probiotic resulted in significantly lower mortality against the pathogens Vibrio harveyi compared with the control group. To elevate the growth and immune resistance ability of cobia, an optimal dose of dietary compound probiotic administration determined by second‐order polynomial regression analysis was 3.3 g kg?1, on the basis of the SGR and mortality after challenge with V. harveyi.  相似文献   

2.
3.
Five isonitrogenous and isocaloric diets were fed to juvenile cobia, to assess the relative contribution of different proteins (fish meal, soybean meal, corn gluten and beer yeast) to the growth of cobia. The dietary effects on nitrogen and carbon turnover and on the isotopic diet‐consumer discrimination factors (Δ15N and Δ13C) were also assessed. Growth results showed that the final body weight, growth rate, feed conversion ratio and protein efficiency ratio of cobia fed diets with alternative protein were significantly lower (< 0.05) than cobia fed diet formulated with 100% fish meal. The estimated half‐lives of nitrogen and carbon ranged between 9–11 days and 6–8 days, respectively, with significant differences among treatments (< 0.05). Δ15N ranged between 0.0–1.2‰ and ?0.1–1.6‰ in whole fish and muscle and Δ13C ranged between 3.8–5.1‰ and 4.0–5.1‰ in whole fish and muscle respectively. Diets were formulated with low levels of dietary nitrogen (10%) supplied by alternative protein sources substituting fish meal. The relative contributions of the dietary nitrogen supplied from these sources to the growth of whole fish and muscle tissue ranged between 4.9–5.2% and 5.9–7.7% respectively. Results indicated that growth accounted for the majority of observed isotopic change in animals under all treatments. In whole animals and muscle tissue, isotopic change due to metabolism occurred faster for carbon stable isotopes than for nitrogen stable isotopes. Cobia fed diets formulated with alternative proteins showed reduced nitrogen turnover rate and increased Δ15N.  相似文献   

4.
The objective of the present study is to preliminarily clarify the mechanism of carbohydrates metabolism in cobia (Rachycentron canadum) (85 ± 3 g) receiving injection of glucose solution. We examined plasma glucose (GLU), total protein (TP), triglyceride (TG), cholesterol (CHOL), insulin, liver glycogen and muscle glycogen, activities of hepatic hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK), as well as relative expressions of glucose transporter 1 (GLUT1), GLUT2, GLUT3, GLUT4, GLUT5 and GLUT9 in hemocyte, liver and muscle of R. canadum when fish were injected with 200 μl of glucose solution (255 mg/ml) after 0, 1, 2, 4, 8, 12, 24 and 48 hr. Fish received injection of 0.68% saline served as control. Results indicated that the plasma GLU, TG and CHOL increased and reached peak at 1, 8 and 48 hr postinjection (hpi) respectively. The hepatic glycogen increased from 1 hpi, and reached peak at 8 hpi, plasma insulin increased at 1 hpi, and reached peak at 2 hpi, and activity of hepatic PK peaked at 8 hpi. Furthermore, the relative expressions of GLUT1, GLUT2, GLUT3, GLUT4 and GLUT5 in hemocytes reached peak at 1,4, 8, 4 and 8 hpi, respectively, relative expressions of GLUT2, GLUT3, GLUT5 and GLUT9 in liver reached peak at 24, 24, 12 and 24 hpi, respectively, and relative expressions of GLUT1 and GLUT3 in muscle were significantly higher at 2 and 2–4 hpi, respectively compared with those in controls. In conclusion, low ability of utilizing glucose in R. canadum may be attributed to insufficient insulin secretion, low activities of key glycolytic enzymes (HK, PFK and PK) regulated by glucose injection and slow increase of GLUTs.  相似文献   

5.
An 8-week feeding trial was conducted to evaluate the effect of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia. Six experimental diets were formulated to contain 20% glucose, sucrose, maltose, dextrin, corn starch and wheat starch respectively. The results indicated that fish fed the wheat starch and dextrin diets showed significantly better weight gain, specific growth rate and protein efficiency ratio compared with those fed the other diets. However, fish fed the glucose diet had a significantly lower survival and condition factor than those fed the other diets. There were significant differences in the total plasma glucose and triglyceride concentration in fish fed diets with different dietary carbohydrate sources. Haematocrit, haemoglobin, red blood cell and leucocytes were significantly affected by the dietary carbohydrate sources. The activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphofructokinase (PFK) and fructose-1,6-bisphosphatase (FBPase) were significantly affected by the dietary carbohydrate sources, while fish fed the glucose diet showed higher G6PD, PFK and FBPase activities than those fed the other diets. These data indicated that dextrin and wheat starch were the most optimal carbohydrate sources for juvenile cobia.  相似文献   

6.
7.
Fish are potentially submitted to water acidification when reared in recirculating aquaculture systems. This study evaluated the responses of juvenile cobia Rachycentron canadum after acute exposure to acid water. Juvenile cobia (12.6 ± 0.5 g; 14.2 ± 0.2 cm) were acutely exposed to four pH levels (7.9 (control), 6.5, 6.0, and 5.5). After 24 h of exposure to different pH values, fish were sampled for physiological and histopathological evaluation. Acid water affected physiological parameters and induced morphological histopathologies on gill and skin of juvenile cobia, and these effects were more conspicuous with decreasing pH values. Acid stress induced blood acidosis in juvenile cobia, coupled to a decrease in bicarbonate (HCO3?) and saturated O2 (sO2) in fish blood. On the other hand, haematocrit, haemoglobin and glucose concentration increased their values (< 0.01) comparing to control level. Hyperplasia with completely fusion of secondary lamella was observed in all pH treatments (6.5. 6.0 and 5.5), while telangiectasia and proliferation of chloride cells were present for fish exposed to pH 6.0 and 5.5. In skin hyperplasia and hypertrophy of mucous cells, necrosis of these cells for fish exposed to pH 6.0 and 5.5 was observed. The results of this study demonstrate that acute acid water exposition affected physiology and histopathology in juvenile cobia, especially at pH values below 6.5. Accordingly, particular attention must be given to pH during cobia reared in recirculating aquaculture.  相似文献   

8.
盐度变化对军曹鱼稚鱼相关免疫因子及其生长的影响   总被引:7,自引:0,他引:7  
研究了盐度(5、10、20、30及对照37)对军曹鱼(Rachycentron canadum)稚鱼生长及其血清溶菌酶、碱性磷酸酶(ALP)、旁路途径补体(ACP)溶血活性(ACH50)和总免疫球蛋白(T-Ig)含量等免疫因子的影响。实验周期为14 d。结果表明,在逐渐达到设定盐度后养殖14 d,盐度30组稚鱼特定生长率(SGR)最高(5.77%/d),而盐度5和10组的SGR(分别为4.24%/d和4.38%/d)显著低于其他组(P<0.05)。在低盐度环境中血清溶菌酶活性在第7天各组都有不同程度升高,其中以盐度20组升高最为显著,其次为盐度10和30组,但第14天各组溶菌酶活性又都回落至对照组水平;而稚鱼在低盐度环境中血清ALP活性受到明显抑制,且活性与盐度呈一定正相关;各组间ACP活性在第7天各盐度组间无明显差异,但实验结束时盐度5和10两组出现显著升高;而T-Ig含量在盐度10组中始终明显高于其他组。研究显示,军曹鱼稚鱼在盐度20~37范围内都可正常生长,尽管稚鱼有较强的低盐度耐受能力,但过低盐度明显影响其生长率并导致体色变黑、蛀鳍和应激增强等异常表现。此外,盐度变化还影响稚鱼多种免疫相关因子。[中国水产科学,2007,14(1):120-125]  相似文献   

9.
It is very necessary to clarify the mechanism of carbohydrate metabolism in fish due to their poor ability to utilize carbohydrates. Glucose transporters (GLUTs) are important carriers involved in glucose transport across the plasma membrane, which is the first rate‐limiting step of carbohydrate metabolism. In this study, five glucose transporters (RcGLUT1, RcGLUT2, RcGLUT3, RcGLUT5 and RcGLUT9) were obtained from Rachycentron canadum. The complete cDNAs open reading frames (ORF) of RcGLUT1, RcGLUT2, RcGLUT3, RcGLUT5 and RcGLUT9 were 1,476 bp, 1,530 bp, 1,551 bp, 1,539 bp and 1,578 bp (GenBank accession no. MK560257 , MK560258 , MH184460 , MH184461 and MH184462 ), encoding 491, 509, 516, 512 and 525 amino acid (aa) residues respectively. All five RcGLUTs contained a Sugar_tr domain, which is an important feature of the GLUT gene family. The multiple sequence alignment and phylogenetic relationship analyses showed that RcGLUTs were highly conserved and homologous from fish to mammals. Examination of tissue distribution showed that RcGLUTs were expressed constitutively in R. canadum. RcGLUT1‐5 and RcGLUT9 had the highest expression in the foregut, kidneys, haemocytes, muscles, liver and heart respectively. All six RcGLUTs first increased to peak levels of expression and then reduced both in the liver and muscle after fasting. The exception is that the expression levels of RcGLUT4 and RcGLUT5 in muscle were significantly lower than the control. In response to hypoxia, only RcGLUT2 in the liver and muscle and RcGLUT9 in muscle were expressed at a significantly lower level relative to the control. In sum, all RcGLUTs in the liver and muscles showed significant changes in response to fasting and hypoxia, suggesting that GLUT genes may play a role in the response to common physiological stresses.  相似文献   

10.
In this study, a 60‐day feeding trial was conducted to determine the effects of feed supplementating the feed of Apostichopus japonicus with peptides on its growth, energy budget, body composition and immune responses. Sea cucumbers were fed with five experimental diets supplemented with different proportions of peptides: 0 (D1), 12.5 (D2), 25 (D3), 37.5 (D4) and 50 (D5) g/kg in basal diet. Our results suggested that specific growth rate (SGR) and ratio of viscera to body wall (RVBW) of sea cucumbers fed with D4 were significantly improved. Relative to D1, ingestion rate (IR) and faeces production rate (FPR) for D3 and D4 were reduced considerably. Notably, the energy intake increased when peptide level increased from 0 to 50 g/kg. Meanwhile, the energy deposited for growth increased, and the energy loss decreased when peptide level increased from 0 to 37.5 g/kg. The sea cucumbers in D4 had the highest level of crude fat and lowest crude ash. The activities of immunoenzyme, such as SOD, CAT, T‐AOC, ACP and AKP, increased with peptide increase. Results suggested that supplementation of the feed with 25–37.5 g/kg peptides could significantly improve the growth performance, body composition and immune capacity of Apostichopus japonicus.  相似文献   

11.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

12.
An 8‐week study was conducted to determine folic acid requirement and its effect on antioxidant capacity and immunity in juvenile Chinese mitten crab Eriocheir sinensis (Milne‐Edwards, 1853), followed by a challenge assay with the pathogen Aeromonas hydrophila for 2 weeks. Folic acid was added to a basal diet at seven levels (0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 mg folic acid kg?1 diet), and a diet free of folic acid and vitamin B12 was also included as a control. Crabs were fed twice daily in 32 tanks with 7.76–8.17 mg oxygen L?1, 25.0–31.0 °C and 7.5–8.3 pH. Growth and feed efficiency were significantly greater in crabs fed ≥2.0 mg folic acid kg?1, but not significantly different between crabs fed diets >2.0 mg folic acid. The superoxide dismutase activity and glutathione S‐transferase activity were highest in crabs fed ≥2.0 mg folic acid kg?1, followed by those fed 0.5 and 1.0 mg folic acid kg?1, and the control diet. The malondialdehyde content was highest in crabs fed the control diet, followed by those fed 0 mg folic acid kg?1, and the lowest value occurred in those fed ≥0.5 mg folic acid kg?1. Phenoloxidase activity and total haemocytes were significantly higher in crabs fed ≥2.0 mg folic acid kg?1 than other diets. Crabs fed 2.0 mg folic acid kg?1 had the highest lysozyme, acid phosphatase and alkaline phosphatase activities but the lowest cumulative mortality. The optimum dietary folic acid requirement by E. sinensis was estimated at 2.29–2.90 mg kg?1 diet.  相似文献   

13.
The effect of dietary substitution of silkworm (Bombyx mori L) meal (SM) for fishmeal (FM) on the growth performance and non‐specific immunity of sea cucumber (Apostichopus japonicus) (initial weight: 12.8 ± 0.16 g) was determined. Four isonitrogenous and isocaloric diets were formulated: Diet 1, which served as the control diet, contained 5% FM; Diet 2 contained 3.75% FM and 1.25% SM; Diet 3 contained 2.5% FM and 2.5% SM; and Diet 4 contained 5% SM. Other ingredients in each of the four diets were kept in the same proportion. After 8 weeks of feeding, the results showed that sea cucumbers fed Diet 2 had 18.7% increases in weight over those fed the control diet, but no significant difference was observed. No obvious difference in body wall composition was detected among the sea cucumbers fed the four different diets. Immunity analysis indicated that phagocytosis and serum alkaline phosphatase activity were not significantly (P > 0.05) affected when FM was partially or completely replaced with SM. Serum lysozyme activity of sea cucumbers fed Diet 4 showed a significant (P < 0.05) growth increase compared with those fed control diet. The results revealed that SM could be an effective substitute for FM in sea cucumber diet.  相似文献   

14.
饲料中添加胆汁酸对军曹鱼生长及体组成的影响   总被引:3,自引:0,他引:3  
在4组等氮等能的军曹鱼(Rachycentron canadum)实用饲料中分别添加不同梯度水平的胆汁酸(0,0.015%,0.030%和0.045%),连续投喂初始体质量为(5.4±0.12)g的军曹鱼8周后,通过测定军曹鱼增重率(WGR,%)、特定生长率(SGR,%)和饲料系数(FCR),并进行肝脏成分分析和血清分析,比较各组军曹鱼生长和体组成的影响。结果表明,添加水平为0.03%组的增重率高于对照组和0.015%添加组,饲料系数低于上述2组;军曹鱼血清胆固醇和肝脏脂肪的质量分数均与饲料中胆汁酸质量分数呈负相关;4组的成活率、特定生长率、全鱼和肌肉灰分、水分质量分数没有显著性差异。由此可见,饲料中添加胆汁酸能够促进军曹鱼的生长,并能降低脂肪在军曹鱼体内中的沉积。  相似文献   

15.
This study was conducted to compare the effects of manganese sulphate (Mn‐S), glycine manganese(Mn‐Gly) and manganese 2‐hydroxy‐4‐(methylthio)butyrate (Mn‐HMB) on juvenile cobia, Rachycentron canadum L. Treatments consisted of 0, 2, 4, 8, 16 or 32 mg supplemental Mn kg?1 from Mn‐S, Mn‐Gly or Mn‐MHB. Growth performance, manganese status, antioxidant activities and tissue mineral content were analysed after a 70‐day feeding period. Specific growth rate (SGR) increased with feeding 6.29 to 12.65 mg Mn kg?1 diet from the Mn‐S or 6.86 to 12.39 mg Mn kg?1 from the Mn‐Gly or 6.50 to 8.33 mg Mn kg?1 from the Mn‐HMB and then plateaued above these levels. Feed conversion ratio (FCR) show decreasing first and then increased trend. Survival rate (SR) were not affected by the dietary treatments (> 0.05). Fish fed diets supplemented with manganese at levels of 4–32 mg Mn kg?1 had obviously higher hepatic Mn‐SOD activity (< 0.05); on the contrary, hepatic has lower malondialdehyde (MDA) content (< 0.05) than fish fed the basal diet. The manganese concentrations of whole body and vertebrae increased with increasing dietary Mn levels from 2–32 mg Mn kg?1 (independent on manganese sources). Dietary Mn supplementation did not significantly influence the copper concentrations of whole body and vertebrae, the zinc concentrations of whole body and liver. Analysis by the broken‐line regression of SGR indicated that the optimal dietary Mn requirements in juvenile cobia were 15.42, 11.22 and 10.50 mg Mn kg?1 diet from Mn‐S, Mn‐Gly or Mn‐HMB respectively.  相似文献   

16.
通过8周的养殖试验,评估了饲料中添加甜菜碱对军曹鱼(Rachycentron canadum)生长、体营养成分、血清生化指标和肝脏中酶活性的影响。共设计6种饲料,甜菜碱添加水平分别为0、0.05%、0.10%、0.20%、0.30%和0.40%。结果显示,添加水平为0.05%时增重率(WG)和特定生长率(SGR)最高,肝脏组织状况最好,全鱼和肌肉中蛋白质质量分数最高;添加水平超过0.20%时肥满度(cF)随甜菜碱添加量的上升而下降。各添加组的肝体比(HSI)均显著低于对照组且全鱼和肝脏中(0.10%添加组除外)的脂肪质量分数均低于对照组;血清指标中各添加组的血清甘油三酯(TG)浓度均高于对照组,但随着添加量的提高有先升后降的趋势;肝脏中谷丙转氨酶(GPT)的活性显著低于对照组。由此可见,饲料中添加适量的甜菜碱可以促进军曹鱼的生长,具有一定的降脂作用,利于脂肪代谢。  相似文献   

17.
The growth response, non‐specific immune activities and disease resistance were measured in sea cucumber, Apostichopus japonicus Selenka (initial average weight 6.80 ± 0.10 g), when fed diets supplemented with graded levels of guanosine from the guanosine‐5’‐monophosphate disodium (GMP) at 0 (control), 0.3, 0.6 and 1.2 g/kg for 8 weeks. The results showed that GMP supplemented at 0.6 and 1.2 g/kg significantly enhanced the growth of sea cucumber. Sea cucumber fed a diet with 0.6 g/kg of GMP had significantly higher intracellular superoxide anion production, nitric oxide synthase activity, lysozyme activity and the total superoxide dismutase (T‐SOD) activity than those in control group (< .05). Increased lysozyme activity and T‐SOD activity were also found in sea cucumber fed GMP at 1.2 g/kg. Moreover, there was significantly lower cumulative mortality after the disease challenge in sea cucumber fed the diets with 0.6 and 1.2 g/kg GMP than that in control and 0.3 g/kg GMP groups (< .05), and no significant difference was observed between 0.6 and 1.2 g/kg GMP groups. These results suggested that feeding GMP at a dose of 0.6 g/kg could enhance growth, non‐specific immunity of sea cucumber as well as its resistance against Vibrio splendidus.  相似文献   

18.
This experiment aimed to investigate the effects of exogenous multienzyme complex (EC) on growth performance, digestive enzyme activity and non‐specific immunity of the Japanese seabass, Lateolabrax japonicus (initial weight 27.09 ± 0.08 g). EC includes protease, xylanase, glucanase and mannase. Japanese seabass were given six levels of EC (0, 0.5, 1.0, 1.5, 2.0 and 2.5 g/kg) for 28 days. Results show that EC significantly enhanced the weight gain rate and specific growth rate (p < .05), while the feed conversion ratio reduced significantly (p < .05). Activities of lipase and trypsin in liver and intestine significantly increased (p < .05). Alkaline phosphatase, superoxide dismutase and lysozyme activities in serum and liver significantly increased (p < .05), while the content of malondialdehyde in liver significantly declined (p < .05). Regression analysis showed that the optimal supplementation of EC in WGR, SGR, FCR, SOD and LZM activity in serum was 1.66, 1.67, 1.81, 1.71 and 1.53 g/kg, respectively, while the best SOD, LZM activity in liver, trypsin activity in liver and intestine supplement were 1.64, 1.51, 1.81 and 1.97 g/kg. In conclusion, EC supplemented can improve the growth performance, digestive enzyme activity and non‐specific immunity of Japanese seabass, and it is recommended that the optimal supplementation of EC in diets of Japanese seabass is 1.5–2.0 g/kg.  相似文献   

19.
An experiment was designed to assess the effects of a commercial β‐mannanase on performance and immunity of tilapia fed plant‐based diets. A basal diet was supplemented with 0.0 (control), 0.5 and 1.0 g β‐mannase kg−1 to formulate three experimental diets. Each treatment contained 4 tanks with 30 fish per tank. Trial lasted 8 weeks. Our results demonstrated that β‐mannanase addition (0.5 and 1.0 g kg−1) improved significantly (P < 0.05) the final weight, specific growth rate (SGR), protein efficiency ratio (PER) and feed conversion ratio (FCR) compared with the control (0.0 g kg−1). There were no significant differences in feed intake (FI) and survival rate (SR) among the 3 dietary treatments (P > 0.05). β‐mannanase supplementation also led to an increase (P < 0.05) in amylase, trypsin and Na+K+‐ATPase activities in intestine, and an decrease (P < 0.05) in aspartate transaminase (AST) and alanine transaminase (ALT) activities in serum compared with the control. However, dietary enzyme supplementation had no significant effect on the serum triacylglycerol (TG), cholesterol (CHO), high density lipoprotein cholesterol (HDL‐C), low density lipoprotein cholesterol (LDL‐C) and very low density lipoprotein cholesterol (VLDL‐C) (P > 0.05). Moreover, the dietary β‐mannanase supplementation groups exhibited an increase in the total leukocyte counts (WBC), differential leukocyte counts, respiratory burst activity, lysozyme activity and superoxide dismutase (SOD) activity compared to the controls (P < 0.05). In conclusion, β‐mannanase addition to tilapia diets improved feed utilization and non‐specific immunity resulting in improvements in growth performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号