首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A new process for making equal biaxially oriented films from liquid crystalline solutions of poly(p-phenylene terephthalamide) (PPD-T) is described. The process involves extruding solutions of PPD-T/H2SO4 through an annular die and over an oil-coated mandrel into a coagulation bath. The films were studied using wide angle X-ray diffraction (WAXS) and scanning electron microscopy (SEM). Tensile stress–strain properties were obtained on samples cut at various directions in the plane of the film. Biaxially oriented films which possess equal properties in the various directions in the plane of the film were produced. Moduli of 2.3 × 109 Pa and tensile strengths of 9.6 × 107 Pa were obtained in the plane of the film. Films with unequal biaxial orientation were also produced. These tend to have higher modulus/tensile strength in the direction of major orientation, the machine direction (up to 8.3 × 109 Pa/2.5 × 108 Pa), but become brittle in the transverse direction.  相似文献   

2.
Polyethylene blends (LLDPE:HDPE ≈ 2:1 by wt) used in NASA's balloon film applications can be effectively reinforced by addition of a small amount of liquid crystalline polymer (LCP). Cast and blown PE films containing ≈ 10% LCP show an appreciable enhancement in tensile modulus ≈400% over that of the neat PE matrix. Anisotropy in these in-situ composites was reduced by controlling LCP molecular orientation via a counter-rotating (C/R) annular die. LCP/PE blend blown films with nearly isotropic properties are obtained. Based on microscopy studies, LCP domains were generally present as fibrils with diameters of ≈ 1 to 3 µM and lengths of ≈ 100 to 300 µM. Films, produced using a C/R die, had fibrillated LCP phases and variable orientation through the film thickness. This paper describes the influence of some key process variables including temperature profile, number of extrusion cycles, degree of mixing, adapter geometry, and die counter-rotation on LCP/PE blend film morphology and mechanical properties. The structure of LCP/PE blend blown films was also evaluated using scanning electron microscope (SEM) and wide angle X-ray scattering (WAXS) techniques.  相似文献   

3.
Two polypropylene cast films of different crystalline structures (one with coexisting small rows of lamellae and spherulites and the other with only a spherulitic structure) were prepared by extrusion. The produced cast films were uniaxially hot drawn at T = 120 °C using a machine direction orientation (MDO) unit and the changes in structure and morphology were examined and related to barrier as well as tear and puncture properties. Structural changes in terms of the degree of crystallinity and crystal size distribution, orientation of the amorphous and crystalline phases, and the deformation behavior at the crystal lattice and lamellae scales were investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS), respectively. A significant effect of the original crystal morphology on the alignment of the amorphous and crystalline phases was observed from FTIR and WAXD. The results also revealed that the deformation behavior of the crystal structure was dependent on the draw ratio (DR). Our findings showed that by increasing DR the crystal lamellae first broke up and oriented along the drawing direction and then, at large DR, they were deformed and created a fibrillar structure. Morphological pictograms illustrating the effects of original morphology and draw ratio on the stretched film microstructure are proposed. The tear resistance along the machine direction (MD) decreased significantly with increasing DR whereas the puncture resistance increased drastically. Finally, the oxygen transmission rate (OTR) of the MDO stretched films could be correlated with the orientation parameters as well as the β-relaxation peak magnitude of the amorphous tie chains.  相似文献   

4.
Anionic polymerization was employed to synthesize well-defined diblock copolymers of polystyrene and poly(2-ethylhexylmethacrylate), PS-PEHMA. Diblock morphologies in bulk and in substrate-supported thin films were characterized by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), respectively. PS-PEHMA diblocks exhibited thermotropic order-disorder transitions; one diblock showed a thermoreversible transition between lamellae and a higher-temperature morphology assigned as perforated lamellae. Unlike PS-poly(alkylmethacrylate) diblocks where the alkyl group is n-butyl or n-pentyl, PS-PEHMA diblocks showed a typical decreasing Flory interaction parameter with increasing temperature. Thin films of PS-cylinder-forming PS-PEHMA diblocks showed a strong preference for the cylinders to lie in the plane of the film; films of incommensurate thickness readily formed terraces. Films of commensurate thickness were easily aligned over macroscopic areas through the application of mechanical shear.  相似文献   

5.
Propylene‐rich ethylene–propylene copolymers (P‐E elastomers) made using metallocene catalysts exhibit excellent elastic properties, including high elongation to break and low tension set, particularly when blended with polyethylene or polypropylene and then compression molded. During film casting, the orientation imposed on a P‐E elastomer lowers the extensibility and elastic recovery of films prepared from either neat P‐E or P‐E blends. A reduction in elongation to break of P‐E films, with or without blending, was found to correlate with an increase in planar birefringence. The presence of dispersed phases of PP or high density polyethylene in P‐E blends, which are drawn into elongated ellipsoids aligned in the machine direction, further reduces the recovery of these P‐E blends. This reduction in elastic recovery for films made from P‐E blends with aligned ellipsoidal dispersions was attributed to strain amplification around the dispersed particles in accordance with finite element simulation results, and was directly related to the dispersion tip radius. Films from P‐E elastomer blended with high density polyethylene (high interfacial tension) were demonstrated to have lower planar orientation in addition to reduced dispersion deformation, and, therefore, better elastic properties, versus films in which the P‐E elastomer was blended with PP (low interfacial tension). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The biaxial molecular orientation of blown films made of blends of linear low density polyethylene (LLDPE) with low density polyethylene (LDPE) was characterized by two different methods: complete pole figures obtained by wide angle X‐rays diffraction (WAXD) and polarized infrared spectroscopy (IR) using the Krishnaswamy approach. The molecular orientation of the blends amorphous phase was also evaluated by polarized IR. The crystallinity of the blown films was determined by WAXD. A good correlation between the X‐ray pole figures and the polarized IR results was obtained. At all blends compositions, it was shown that the a‐axis of the polyethylene orthorhombic cell was preferentially oriented along the machine direction, the orientation degree along this direction increasing with the increase of the LDPE amount in the blends. The b‐axis changed its preferential orientation from film thickness in the 100/0 LLDPE/LDPE film to along the transverse direction with increasing LDPE in the blends. The c‐axis changed its orientation from orthogonal to normal direction in the 100/0 LLDPE/LDPE film to along the film thickness with increasing LDPE in the blends. Polarized IR characterization showed a negligible orientation of the amorphous phase. The amount of crystallinity was dependent on blend composition decreasing with the increase of LDPE content in the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2760–2767, 2006  相似文献   

7.
Molecular orientation imparted during film fabrication is known to have a major effect on mechanical and thermal properties of both glassy and semicrystalline polymers. A three-variable Box-Behnken designed experiment was used to study the effects of die gap, die land length, and blowup ratio (BUR) on key linear low density polyethylene (LLDPE) blown film properties at constant final film thickness. In addition, differences in molecular orientation in the films were studied using optical birefringence and shrinkage methods. Measured key film properties were correlated to processing conditions and to measured molecular orientation. Die land length had no significant effect on film structure and properties. All LLDPE films exhibited about 70 to 80% shrinkage in the machine direction (MD) but expanded in the cross direction (CD). Most films exhibited negative in-plane birefringence. MD Elmendorf tear was found to be inversely related to drawdown ratio and MD shrinkage, suggesting that MD tear is dependent primarily on amorphous chain extension and hence, amorphous segments orientation for LLDPE blown films. Dart impact strength of the films was shown to be related to MD shrinkage and to the induced surface roughness due to varying die gap. In a separate study, blown films of three high pressure LDPEs were fabricated under nearly identical conditions. No correlation was found between birefringence and shrinkage data on the LDPE blown films.  相似文献   

8.
Four kinds of polypropylene (PP) cast films with different die draw ratios (DDR) were prepared. The impact of different DDR on the crystalline and oriented properties of PP cast films and annealed films was explored herein. Wide angle X-ray diffraction (WAXD) and fourier transform infrared (FTIR) methods were adopted to examine the orientation degree of crystalline and amorphous phases. Long period distance (Lp) of the crystalline structure was tested by small angle X-ray scattering (SAXS). Crystallization was determined by differential scanning calorimeter (DSC). The oriented and crystalline behaviors of the samples were carried out by the elastic recovery (ER) testing. Then, samples after being annealed were examined by the same methods. The influence of annealing process on the films’ structures and properties was explored. Besides, the final stretched microporous membranes manufactured via stretching the annealed films along machine direction were examined by scanning electronic microscope (SEM). No matter for cast films or for annealed films, it is found that the films’ orientation degree of crystalline and amorphous phases, as well as Lp and crystallinity are larger at higher DDR and relatively lower at lower DDR. When the DDR is overly high (DDR?=?170), both the oriented and crystalline properties will decline. Elastic recovery testing indicates that a film with better orientation of the crystalline and the amorphous phases as well as with higher crystallinity can be obtained at an appropriate DDR. SEM images show that stretched membranes with better microporous structure can be obtained when the precursor film is prepared at a proper DDR.  相似文献   

9.
Cast films of a high molecular weight linear polypropylene (L-PP) were prepared by extrusion followed by stretching using a chill roll. An air knife was employed to supply air to the film surface right at the exit of the die. The effects of air cooling conditions, chill roll temperature, and draw ratio on the crystalline orientation, morphology, mechanical and tear properties of the PP cast films were investigated. The crystallinity and crystal size distribution of the films were studied using differential scanning calorimetry (DSC). It was found that air blowing on the films contributed significantly to the uniformity of the lamellar structure. The orientation of crystalline and amorphous phases was measured using wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). The amount of lamellae formation and long period spacing were obtained via small angle X-ray scattering (SAXS). The results showed that air cooling and the cast roll temperature have a crucial role on the orientation and amount of lamellae formation of the cast films, which was also confirmed from scanning electron microscopy (SEM) images of the films. Tensile properties and tear resistance of the cast films in machine and transverse directions (MD and TD, respectively) were evaluated. Significant increases of the Young modulus, yield stress, tensile strength, and tensile toughness along MD and drastic decreases of elongation at break along TD were observed for films subjected to air blowing. Morphological pictograms are proposed to represent the molecular structure of the films obtained without and upon applying air cooling for different chill roll temperatures. Finally, microporous membranes were prepared from annealed and stretched films to illustrate the effect of the PP cast film microstructure on the morphology and permeability of membranes. The observations of SEM surface images and water vapor transmission rate of the membranes showed higher pore density, uniform pore size, and superior permeability for the ones obtained from the precursor films prepared under controlled air cooling.  相似文献   

10.
A series of linear low-density polyethylene blown films were studied using the techniques of time-resolved, small-angle X-ray scattering (SAXS) using a synchrotron source and a time-resolved, small-angle light scattering. Scattering patterns and the load-extension curve were obtained simultaneously during deformation. It was found that the initial orientation of the film, with respect to the tensile axis, was important in determining the operative elastic deformation modes. Films drawn parallel to the machine direction (MD) showed evidence for lamellar separation, whereas interlamellar shear occurred in films drawn parallel to the transverse direction. In films drawn at 45° to MD, lamellar stack rotation was observed via SAXS. In all cases, the yield point corresponded to the activation of crystallographic deformation and the onset of the disruption of crystalline lamellae. In films drawn parallel to MD, the SAXS showed a distinct 4-point pattern upon macroscopic yield, indicating lamellar corrugation. Regardless of the initial orientation, a fibrillar morphology was achieved at some strain after yield that coexisted with the fragmenting lamellar morphology. Comparison of results from deformed spherulitic bulk samples showed that the study of oriented blown film containing a stacked lamellar morphology may be used, to a first approximation, as a model for the deformation of different regions of spherulites in unoriented spherulitic samples. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 321–339, 1998  相似文献   

11.
Thin films of Pb(Zr0.4TiO.6)O3 produced by chemical solution deposition were used to study the effects of stress from different platinized single-crystal substrates on film orientation and resulting electrical properties. Films deposited on MgO preferred a (001) orientation due to compressive stress on the film during cooling through the Curie temperature ( T C). Films on Al2O3 were under minimal stress at T C, resulting in a mixture of orientations. Those on Si preferred a (111) orientation due to templating from the bottom electrode. Films oriented in the 〈001〉 direction demonstrated lower dielectric constants and higher P r and − d 31 values than (111) films.  相似文献   

12.
通过新型的旋转芯棒薄膜吹塑设备制备了低密度聚乙烯(LDPE)/高密度聚乙烯(HDPE)复合薄膜,并研究了该设备模具流道环流协同作用对吹塑聚乙烯薄膜结构和性能的影响。结果表明,制备的聚乙烯薄膜呈现一种互锁片晶结构;芯棒转速的提高对聚乙烯薄膜样品的结晶度、片晶厚度也有一定增益作用,使得结晶更完善;聚乙烯薄膜的拉伸性能和撕裂性能随芯棒转速提高都有所提升,尤其是横向力学性能,横向拉伸性能最大提升幅度为25.75%,横向撕裂性能最大提升幅度为27.64%;同时,该技术实现了在不影响聚乙烯薄膜的纵向热收缩率的情况下,大幅提高其横向热收缩率,提升幅度可达128.41%。  相似文献   

13.
气膜润滑剪切机头及其在短纤维增强胶管中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
气膜润滑是挤出时在胶料和口型壁之间形成一层很薄的空气膜,不仅可以降低流动阻力,提高挤出量,同时也可降低挤出膨胀。在短纤维增强胶管挤出中可以通过内芯旋转使短纤维沿周向取向以提高爆破强度,但也因内芯旋转使挤出物扭转造成挤出不稳定。利用气膜润滑技术设计制造的气膜润滑剪切机头,成功地解决了由于内芯旋转而产生的挤出扭转造成的挤出不稳定现象。通过流场分析计算,从理论上预测了利用气膜润滑消除物料旋转的可行性。介绍了用气膜润滑剪切机头制造短纤维增强胶管的实验结果。  相似文献   

14.
Wide angle X-ray diffraction pole figure, small angle X-ray scattering (SAXS), and refractive index techniques have been employed to investigate structure and deformation mechanisms in unidirectionally cold-rolled ultrahigh molecular weight polypropylene (UHMWPP) films. All reciprocal lattice vectors (plane normals) of (110), (040), and (130) were found to populate in the film normal (thickness) direction, suggesting that more than one orientation process must be involved in the deformation. SAXS studies on the cold-rolled UHMWPP reveal an oriented lamellar structure with its long axis perpendicular to the rolled direction, however, the lamellae are somewhat tilted. Refractive index and tensile measurements were undertaken to determine the optical and mechanical anisotropy of the cold-rolled UHMWPP films. A similar study was undertaken of unidirectionally rolled conventional polypropylene (PP) for comparison.  相似文献   

15.
In recent times, a “crystalline” and flexible optical waveguide candidate with excellent heat‐resistance and dimensional stability are developed. For the practical use of this crystalline optical film in the near future, an accurate control of the solid‐state structure is indispensable because of the necessity of reducing light refraction at the crystalline/amorphous interface. In this study, changes in the fine structure and lamella arrangement upon drawing poly[tetrafluoroethylene‐co‐(perfluoroethylvinylether)] (EFA) transparent crystalline films were investigated by using wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS) methods. The EFA was crystallized as a lamella crystal in the films and formed a thicker lamella. Upon the drawing of the EFA films, four‐point SAXS diagrams developed in the photograph at through direction to the film, which implied that a particular type of layer structure, an alternately tilted lamella arrangement known as the herringbone, was formed. From the result of WAXD and SAXS measurements at edge direction to the film, it is found that formation of isotropic disordered lamella arrangement. Therefore, it is indicated that three‐dimensional lamella arrangement in this fluorinated transparent film forms uniaxially cylindrical symmetry. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

16.
Akira Kaito 《Polymer》2006,47(10):3548-3556
The oriented crystallization of poly[(R)-3-hydroxybutyrate] (PHB) in the miscible blends with poly(vinylidene fluoride) (PVDF) was investigated with various compositions. The PVDF/PHB blend films were prepared by solution casting and subsequent melt-quenching in ice water. Oriented films of the blends were prepared by uniaxially stretching the melt-quenched film at 0 °C in ice water using a hand-operated stretching apparatus. The oriented blend films were heat-treated at a fixed length in order to crystallize PHB in the oriented state. The crystal orientation and the lamellar textures of the obtained samples were studied with wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS), respectively. The SAXS measurements showed that a considerable amount of molecular chains of PHB are excluded from the lamellar stacks of PVDF and exist in the interfibrillar regions in the oriented films of the blends. The cold crystallization of PHB in the interfibrillar region results in the orientation of PHB crystals, and the type of crystal orientation depends upon the composition of the blends. For the PVDF/PHB=4/6-7/3 blends, the crystal a-axis of PHB is highly oriented parallel to the drawing direction and the crystal c-axis (molecular chain axis) in PHB crystals is perpendicular to the drawing direction, i.e. orthogonal to the chain axis of the crystals of PVDF. It is considered that the a-axis orientation is induced by the confinement of crystal growth in the interfibrillar nano-domains. For the PVDF/PHB=2/8-3/7 blends, however, the crystal c-axis of PHB is primarily oriented in the drawing direction, suggesting that the stressed molecular chains of PHB are crystallized with the molecular orientation retained.  相似文献   

17.
One of the most important materials for blown film is high‐density polyethylene (HDPE) with wide molecular weight distribution. First, we computed a wall stress at the entrance of a spiral groove in a particular die during blown film processing on a particular condition, to which a similar condition is widely utilized in a film works. The computed value is about 170 kPa, while the HDPE melt slips at die wall at stresses above approximately 50 kPa. The stress of 170 kPa is sufficiently large for the slip occurrence of the melt. Then, we investigated the effects of wall slip and melt visosity on film thickness distribution in the circumferential direction; the distribution tends to decrease with decreasing wall slip and melt viscosity. This tendency is explained by considering flow distribution in a spiral mandrel die and polymer melt flow characteristics.  相似文献   

18.
Multilayer blown film coextrusion was studied, both experimentally and theoretically. For the experimental study, an annular die with a feed-port system was designed and multilayer blown films were produced by rotating the inner mandrel with a one horsepower variable-speed drive at speeds from nearly 2 to 6 rpm, and by inflating the tubular molten film with air. The die has 16 feed slots and melt pressure transducers are mounted along the axial direction of the outer wall of the annular flow channel. The transducers were used to determine the pressure gradient in the annular flow channel, which then permitted determination of the reduction in pressure drop when different combinations of two polymer systems were coextruded. Polymers used for b own film coextrusion were: (1) low-density polyethylene with ethylene-vinyl acetate; (2) low-density polyethylene with high-density polyethylene; (3) low-density polyethylene with polypropylene; (4) high-density polyethylene with ethylene-vinyl acetate. For the theoretical study, stratified helical flow was analyzed using a power-law non-Newtonian model. A computational procedure was developed to predict the number of layers, layer thickness, and the volumetric flow rate as functions of certain processing variables (namely, the pressure drop in the die, and the angular speed of rotation of the inner mandrel of the die) and the rheological parameters of the individual polymers concerned. Comparison was made of the theoretical prediction of volumetric flow rate with experimental ones. Some representative results are presented of the theoretically predicted axial and angular velocity distributions, shear stress profiles, and shear rate profiles.  相似文献   

19.
Polypropylene (PP) films have been prepared through two different cast extrusion processes: one using a machine direction orientation (MDO) unit and the other stretching the films at the die under high cooling conditions (lab unit). Films for two PP resins different in molecular structure have been prepared using both processing techniques. The effect of the resin structure and the processing conditions on the film properties has been examined. It was found that the MDO unit generated a highly oriented fibrillar crystalline structure with a distribution of elongated thick fibrils while extrusion under high cooling conditions generated an oriented row nucleated lamellar structure. The films showed distinctive tensile responses in stretching, with a strong solid‐elastic response for the oriented MDO films and a steady strain hardening after yielding for the sample obtained from lab unit cast extrusion. It was found that the strength in the transverse direction (TD) was particularly very low for the oriented MDO films made of the bimodal PP. The oxygen permeability was reduced with increasing draw ratio (DR) for the MDO films. The haze property for the MDO samples reduced to a plateau for DR up to 5 while clarity improved continuously with DR.  相似文献   

20.
Polarised attenuated total reflection (ATR) infrared spectroscopy has been used to quantify biaxial orientation in commercially manufactured poly(ethylene terephthalate) (PET) films and stretch-blow moulded bottles. Using a single-bounce accessory with a high refractive index element, and applying appropriate data normalisation prior to measuring band intensities, measurement of the average square direction cosines that describe the orientation is simple. Using this technique it was shown that uniaxially drawn PET films were actually biaxially oriented, and there were significant gradients in orientation through the film thickness. Bulk measurements, or methods that assume uniaxial orientation, would give incorrect results from these materials. The bottles exhibited complex orientation patterns that depended on preform and mould design, and again there were strong orientation gradients through the bottle walls. Kratky's model (pseudo-affine) was used in an attempt to predict the biaxial orientation gradients as a function of preform and bottle dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号