首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The concentrations of various metals (Cr, Cu, Co, Fe, Mn, Ni, Pb, Zn, and Cd) were determined in recently deposited surface sediments of the Gomati River in the Lucknow urban area. Markedly elevated concentrations (milligrams per kilogram) of some of the metals, Cd (0.26–3.62), Cu (33–147), Ni (45–86), Pb (25–77), and Zn (90–389) were observed. Profiles of these metals across the Lucknow urban stretch show a progressive downstream increase due to additions from 4 major drainage networks discharging the urban effluents into the river. The degree of metal contamination is compared with the local background and global standards. The geoaccumulation index order for the river sediments is Cd>Zn>Cu>Cr>Pb. Significant correlations were observed between Cr and Zn, Cr and Cu, Cu and Zn and total sediment carbon with Cr and Zn. This study reveals that the urbanization process is associated with higher concentrations of heavy metals such as Cd, Cu, Cr, Pb, and Zn in the Gomati River sediments. To keep the river clean for the future, it is strongly recommended that urban effluents should not be overlooked before their discharge into the river. Received: 16 February 1996 · Accepted: 29 February 1996  相似文献   

2.
The total concentrations and oral bioaccessibility of heavy metals in surface-exposed lawn soils from 28 urban parks in Guangzhou were investigated, and the health risks posed to humans were evaluated. The descending order of total heavy metal concentrations was Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd, but Cd showed the highest percentage bioaccessibility (75.96%). Principal component analysis showed that Grouped Cd, Pb, Cr, Ni, Cu and Zn, and grouped Cr and Mn could be controlled two different types of human sources. Whereas, Ni and Fe were controlled by both anthropogenic and natural sources. The carcinogenic risk probabilities for Pb and Cr to children and adults were under the acceptable level (<1 × 10−4). Hazard Quotient value for each metal and Hazard Index values for all metals studied indicated no significant risk of non-carcinogenic effects to children and adults in Guangzhou urban park soils.  相似文献   

3.
The presence of heavy metal concentrations was examined in natural sediments from four sites along the Jajrood river in northeast of Tehran, the capital of Iran. Besides determination of elemental concentrations (Pb, Cu, Zn, Cd, Ni and Cr), X-ray fluorescence and X-ray diffraction tests were carried out to determine other chemical components in these adsorbents. Also the ability of sediments to adsorb these heavy metal ions from aqueous solutions was investigated. Results show that the extent of adsorption increases with increase in adsorbent concentration. The amount of adsorbed Pb, Cu and Zn in sediments was much greater than that of the other metals, and Cr was adsorbed much less than others. The adsorbabilities of sediments to heavy metals increased in the order of Pb > Cu > Zn > Cd > Ni > Cr. Based on the adsorption data, equilibrium isotherms were determined at selected areas to characterize the adsorption process. The adsorption data followed Freundlich and Langmuir isotherms in most cases. Correlation and cluster analysis was performed on heavy metals adsorption and sediment components at each site to evaluate main adsorbing compounds in sediments for each metal. Results demonstrated that heavy metals sorption is mostly related to load of organic matter in the Jajrood river sediments.  相似文献   

4.
The present study was conducted to investigate the concentrations of heavy metals (HMs) in deep groundwater from coal mining area, including cadmium (Cd), chromium (Cr), copper (Cu), zinc (Zn), lead (Pb), and nickel (Ni). The samples were collected from different aquifers in four coal mines of northern Anhui province, China, which were unconsolidated formation (UF), coal measure aquifer (CA), Taiyuan limestone aquifer (TA), and Ordovician limestone aquifer (OA), respectively. HM concentrations from the four different sources were analyzed by atomic absorption spectrometer, and were found in the order of Zn>Ni>Pb>Cu>Cd>Cr (in UF), Ni>Zn>Pb>Cu>Cr>Cd (in CA), Ni>Zn>Pb>Cu>Cd>Cr (in TA), and Zn>Ni>Pb>Cu>Cr>Cd (in OA), respectively. Concentrations of Cu, Zn, and Cr were found within the quality guidelines set by Bureau of Quality and Technical Supervision of China (GB/T 14848-93) and World Health Organization, while the concentrations of Cd, Pb, and Ni were higher than their respective permissible limits. The enhanced concentrations of Ni, together with Cr, were considered to be affected by anthropogenic sources, since they both had high variable coefficient. Moreover, the inter-dependence of HMs and their pollution sources were further discussed using statistical techniques, including one-factor analysis of variance, Pearson correlation analysis, and principle component analysis.  相似文献   

5.
Accumulation and distribution of heavy metals and phosphorus in sediments impact water quality. There has been an increasing concern regarding fish health in the St. Lucie Estuary, which is related to increased inputs of nutrients and metals in recent decades. To investigate vertical changes of contaminants (P, Cd, Cr, Co, Cu, Ni, Pb, Zn, and Mn) in sediments of the St. Lucie Estuary in South Florida, 117 layer samples from six of the 210 to 420 cm depth cores were analyzed for their total and water-soluble P and heavy metals, clay, total Fe, Al, K, Ca, Mg, Na, and pH. Principal component analysis (PCA) was used in two sets of analytical data (total and water-soluble contaminant concentrations) to document changes of contaminants in each core of sediments. The PCA of total contaminants and minerals resulted in two factors (principal components). The first and second factors accounted for 61.7 and 17.2 % of the total variation in all variables, and contrast indicators associated with contaminants of P, Cd, Co, Cr, Ni, Pb, Zn, and Mn and accumulation of Fe and Al oxides, respectively. The first factor could be used for overall assessment of P and heavy metal contamination, and was higher in the upper 45–90 cm than the lower depths of each core. The concentrations of P and heavy metals in the surface layers of sediments significantly increased, as compared with those in the sediments deeper than 45–90 cm. The PCA of water-soluble contaminants developed two factors. The second factor (Cu–P) was higher in the upper than the lower depths of the sediment, whereas the highest score of the first factor (Cd–Co–Cr–Ni–Pb–Zn–Mn) occurred below 100 cm. The water-soluble Cu and P concentrations were mainly dependent on their total concentrations in the sediments, whereas the water-soluble Cd, Co, Cr, Ni, Pb, Zn, and Mn concentrations were mainly controlled by pH.  相似文献   

6.
This communication presents the results of preliminary investigation of the characteristic levels of heavy metals in surface soils of an oilfield in the Niger Delta. The results indicate higher concentration of the following metals: Cd, Pb, Cu; Ni, Zn, Cr, Mn and Hg in soils around the gas plant than the pipeline areas. There is a significant temporal and spatial variation in the concentrations of the heavy metals. Samples collected during the wet season showed lower concentrations of heavy metals. The distribution pattern of heavy metals follows the following order Fe> Mn> Zn> V> Cr> Pb> Cu> Ni> Cd> Hg> As. The soils around the oilfield could be considered unpolluted since the concentrations of the metals fit into background levels and concentrations found in natural and agricultural soils. Since metal build up is a gradual process, farmland, fishing ponds and water bodies closer to these facilities will be at risk of heavy metal pollution over time.  相似文献   

7.
In this work we studied the accumulation of heavy metals in nine species of fish with different life and feeding habitats which are native and major commercial fish in the Baotou Urban Section of the Yellow River. The results showed that the concentration of heavy metals was significantly dependent on fish species; the pollution index of heavy metals in different species were ranked as Hemiculter leucisclus > Carassius auratus auratus > Hemibarbus maculatus > Megalobrama amblycephala > Abbottina rivularis > Cyprinus carpio > Squaliobarbus curriculus > Perccottus glehni > Saurogobio dabryi. Product–moment correlation coefficients among the metal pairs Pb–Zn, Cu–Cd, Cu–Zn, Cu–Pb, Pb–Cd, and Zn–Cd revealed there was no competitions between metals in each tissue. Correlations between heavy metal concentrations and fish length or weight indicated that accumulation of the heavy metals by the different fish species was related to their surrounding environments and their life and feeding habitats. According to the mean bioconcentration factors (BCFs), the heavy metal concentrations in these nine species were ranked Zn ≫ Cu > Cd ≈ Pb. In this work, the bioaccumulation factors (BAFs) were developed by using the sum of exchangeable and bound-to-carbonate heavy metals as Cs values. It was found that BAFs better reveal the accumulation characteristics of the heavy metals in the fish, which might provide an effective method for assessing bioaccumulation of heavy metals.  相似文献   

8.
Contamination of soils with heavy metals is widespread and poses a long-term risk to ecosystem health. Abandoned and active mining sites contain residues from ore-processing operations that are characterised by high concentrations of heavy metals. The distribution and mobility characteristics of heavy metals (As, Cd, Cu, Pb, and Zn) in paddy soil samples from Kočani Field (Macedonia) using ICP-EAS and a sequential extraction procedure was evaluated. The results indicate that highly elevated concentrations of As, Cd, Cu, Pb, and Zn were detected in the paddy soil sample from location VII-2 in the vicinity of Zletovo mine and Zletovska river in the western part of Kočani Field, which drains the untreated acid mine waters and mine wastes from the active Zletovo mine. The degree of contamination based on index of geoaccumulation (I geo) from strong to weak in the paddy soils samples is Pb > As > Cd > Zn > Cu. The mobility potential of heavy metals in all paddy soil samples increases in the order As < Cu < Pb < Zn < Cd. According to the results of the anthropogenic impact on the paddy soils, a further study on the heavy metal concentrations in rice and other edible crops, the remediation process of the paddy soils and a dietary study of the local population are needed.  相似文献   

9.
Distillery and tanneries are major source of heavy metals pollution in natural wetland sites in India. Present study deals with the heavy metals accumulation potential of Typha angustifolia and Cyperus esculentus growing in distillery and tannery effluent polluted wetland sites. The metal accumulation pattern in both macrophytes showed direct correlation with the metal content in sediments. Both macrophytes were observed root accumulator for Fe, Cr, Pb, Cu, and Cd. The metal accumulation in T. angustifolia was found higher than C. esculentus, and accumulation pattern was Fe > Mn > Cr > Zn > Pb > Cu > Ni > Cd. Simultaneously, chlorophyll, protein, cysteine, and ascorbic acid were also induced in T. angustifolia than C. esculentus. In addition, formation of multinucleolus in shoot of T. angustifolia was found an evidence of extra protein synthesis for tolerance under stress conditions. Hence, C. esculentus was observed potential but less tolerance for metals than T. angustifolia. Therefore, these wetland plants could be used for phytoremediation of heavy metals from wastewater.  相似文献   

10.
Soils of loamy sand on weathered, sandy dolomite were cored from six holes up to 70 ft beneath a municipal waste landfill in central Pennsylvania. Mn, Fe, Ni, Co, Cu, Zn, Cd, Pb, and Ag were determined in exchangeable and non-exchangeable forms in total and < 15 μm soil samples. Most of these metals were bound in Mn oxides, non-exchangeable with 0.5 M CaCl2. The Mn oxides (often X-ray amorphous) identified when crystalline as todorokite occurred chiefly as coatings on quartz grains.Somewhat higher amounts of acid leachable trace metals were found in the < 15 μm size fraction than in the total soil samples; however, trace metal/Mn ratios were similar in both. In general, the initial mild soil leaching, which dissolved chiefly Mn oxides, gave MnFeX>Co>Ni>Pb>Zn> Cu>Cd>Ag. The final leaching, which dissolved chiefly ferric oxides, gave Fe>Mn>Ni>Zn>Co> Cu>Pb>Cd>Ag. Samples taken from an unpolluted site and from the same soils affected for seven years by leachate from the refuse had similar metal contents.Soil extractable Co, Ni, Cu, and Zn could be predicted from the Mn extracted. Based in part on factor analysis of the data, Mn-rich oxides had at least tenfold higher heavy metal percentages than Fe-rich oxides (crystalline component goethite), reflecting their greater coprecipitation potential. Because of this potential and because of the generally higher solubility of Mn than Fe oxides, more heavy metals may be released from Mn-rich than from Fe-rich soils by disposal of organic-bearing wastes. However, leaching of the moisture-unsaturated soils in situ is rarely severe enough to completely dissolve both Mn and Fe oxides. Based on the Mn content, Cd, Cu, and Pb were depleted in soil moisture beneath the landfill relative to their amounts in the soil. This depletion may reflect factors including heterogeneity in metal content of the soil oxides; preferential resorption of these metals; and removal of the Cd, Cu, and Pb as organic precipitates or as inorganic precipitates such as carbonates.  相似文献   

11.
 Extensive irrigation by the effluents released from a paper mill near Nanjangud have led to the accumulation of heavy metals in the soil and different parts of the paddy crops. In this paper, the physicochemical characteristics of paper mill effluents and the accumulation of heavy metals (Cu, Zn, Pb, Co, Cd, Cr, and Ni) in the soil and different parts (root, leaf, and seed) of the paddy crops growing in the irrigated area are described and compared with the soil and paddy crops irrigated by natural waters (unpolluted). Chemical and biological oxygen demands of wastewater were found to be 437 and 1070 ppm respectively, which are beyond the tolerance limits set by Indian standards. The total dissolved and suspended solids are 1754 and 900 ppm respectively. The concentration of heavy metals (except Zn) in the seeds is remarkably less than that in the roots and leaves of the paddy crops. The heavy metal uptake by plants shows the greatest accumulation of Cu, Cr, Co, and Pb in the roots; Cd and Ni in the leaves; and Zn in the seeds of rice. The heavy metal content of the soil and their total uptake by paddy roots has the relation: Pb>Zn>Cu>Cd and Pb>Cu>Zn>Cd. Survival of paddy crops irrigated by polluted waters indicates tolerance to toxic heavy metals. In conclusion, since in many tropical countries the common diet of people is rice, the accumulation of toxic heavy metals in rice may lead to health disorders. Received: 18 July 1995 / Accepted: 24 February 1997  相似文献   

12.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   

13.
During the last two decades, the coastal environment of southeast India has experienced intense developments in industry, urbanization and aquaculture. Moreover, the 2004 mega tsunami has devastated this coast, thus affecting the coastal sediment characteristics. These two phenomena prompted a study to characterize the sediment, to understand the mechanisms influencing the distribution of heavy metals and to create baseline data for future impact assessment. Results showed that the coastal sediment was carpeted with a mosaic of sand and silty sand with a minor amount of clay. Heavy metal values showed maximum variation for Fe and minimum for Cd. Their average values showed the following decreasing trend: Fe > Cu > Zn > Pb > Cr > Ni > Cd. This study shows that the major source of metals at Kalpakkam coast are land-based anthropogenic ones, such as, discharge from industrial waste, agricultural waste, urban, municipal and slum sewage into the Buckingham canal, which in turn discharges into the sea through backwaters, particularly during northeast monsoon period. A clear signature of the role of backwater discharge increasing the concentration of a few metals in the coastal sediments during monsoon period was observed. Assessments of the degree of pollution, concentration factor (CF), geoaccumulation index (I geo) and pollution load index (PLI) have been calculated. CF values and I geo indicated that the coastal sediment is moderately polluted by Cu and Cd. Increase in Cu, Pb and Zn concentration during the monsoon period (October–January) compared to the rest of the year was noticed. Factor analysis and correlation among the heavy metals concluded that Cr, Ni, Cd and Fe are of crustal origin, whereas, Cu, Pb and Zn are from anthropogenic sources. Organic carbon content in the sediment increased during monsoon period, pointing to the role of land runoff and backwater discharge in enhancing its content. The study also elucidates the impact of the recent tsunami in depleting metal content in the coastal sediment as compared to the pre-tsunami period.  相似文献   

14.
The Tessier sequential extraction scheme (SES) was applied to sediments from the Odiel river catchment (Iberian Pyritic Belt, SW of Spain), one of the most acid rivers on Earth, to assess the chemical association (exchangeable, carbonatic, bound to manganese and iron oxides, bound to organic matter and residual mineral) of heavy metals (Zn, Cd, Pb, Cu, Cr, Mn, Ni, Fe, and Hg). Sediments are very heterogeneous in their textural characteristics, showing different grain size. Twenty-seven samples were studied from from areas along the Odiel River, from the source to the mouth, with special interest in the Odiel Marshes Natural Park due to its ecological significance. Samples were classified as sandy (especially at the river mouth with low iron oxide and organic matter content) and clay-silty (in the middle of the river catchment with high iron oxide content). The numerous sandy samples with low pH values explain the low levels of metals upstream, although potential metals contributions arise from mining and ore. However, the presence of sulfate in the mining area and carbonate at the mouth may explain the high presence of lead and iron in these sandy zones. Some percentage of mobile Ni, Cu, and Zn were detected in the mining area, but the elevated relative percentage of exchangeable Cd in the estuary is even more remarkable. The percentage of Zn bound to carbonate is considerable in the catchment but especially in the estuary. However, Cu is only detected in the carbonate phase downstream, in spite of the low concentration of carbonate, which represents a drawback in the application of the Tessier SES to these types of samples. Finally, relatively high percentages of residual, non-mobile, Hg and Pb were observed, in the estuarine and mining areas, respectively. Sand, lime, and clay fractions of representative samples from Areas I, II, and III were used in a metal speciation study. Mainly, the elements analyzed had accumulated in the non-residual fractions. In the mining area of the Pyrite Belt, the elements analyzed are mainly bound to Fe–Mn oxides (Fe + Mn + Cu + Cr + Pb + Mn ± Zn) and the organic matter/sulfide fraction (Ni + Zn + Hg ± Cd), independent of sediment grain size. In conclusion, we show that the results of the study of chemical speciation in sediments from acid rivers are independent of the sediment grain size considered.  相似文献   

15.
Sixty-five sediment samples and 25 water samples were collected from Al-Mujib reservoir, central Jordan, in order to investigate the heavy metal and ionic contamination assessment. Therefore, to achieve this aim, water and sediment samples were collected during winter and summer seasons (2007) from Al-Mujib reservoir and the areas surrounding it. The study shows that there are elevated levels of SO4 2−, Cl and Na+ in reservoir water, which might originate from anthropogenic activities in the reservoir catchment area. In addition, the reservoir water has higher total hardness (TH) values together with high Ca and Mg contents. This might be attributed to pH of reservoir water and the nature of the rocks exposed in the catchment area. The average levels of heavy metals in reservoir sediments are Fe = 14,888.1, Cu = 17.8, Zn = 88.6, Ni = 38.7, Cd = 4.4, Mn = 337.9 and Pb = 6.1 mg/kg, which are lower than that observed in Wadi Al-Arab reservoir, northern Jordan. The values of enrichment factor are Cd = 35.5, Ni = 3.02, Zn = 2.54, Cu = 1.26, Mn = 1.2 and Pb = 0.57; these values indicate that heavy metals in sediments of Al-Mujeb reservoir have a different anthropogenic incrimination inputs. The study showed that the sediments are polluted with Cd, relatively contaminated with Ni and Zn and uncontaminated with respect to Mn, Pb and Cu.  相似文献   

16.
Zn, Cu, Cr and Pb concentrations of the sediment collected from three tidal flat sites of Yangtze estuary were investigated in October 2003. Results showed that the average concentrations of heavy metals in the sediments were two to three times to the environment background values of Yangtze estuary tidal flat sediment. The heavy metal concentrations in the sediments near the Bailonggang (BLG) and Laogang (LG) sewage outfalls were obviously higher than those of Chaoyang (CY) tidal flat where there are no sewage outfalls near the coast. And the concentrations of heavy metals in the surface sediments of LG tidal flat decreased with the increasing of the distance to the sewage outfalls. The heavy metal concentration profile in the sediment core changed with the depth, and generally reached maximum values at the depth of plant roots. The assessment results showed that the sediments of LG, BLG and CY tidal flat had been polluted by heavy metals in different level. The pollution degree of heavy metals in the sediments was as follows: Zn > Cu > Pb > Cr. The potential ecological risks of the four heavy metals in three tidal flat sites sediment were all at a middle level, and Cu and Pb made the main contributions. The adverse ecological effects caused by the four heavy metals did not occur frequently.  相似文献   

17.
In the mining district of Plombières-La Calamine (East Belgium), extensive Pb–Zn mining activities resulted in an important contamination of overbank sediments along the Geul river. Moreover, a huge amount of heavy metals is stored in a dredged mine pond tailing, which is located along the river. In the dredged mine pond tailing sediments, Pb–Zn minerals control the solubility of Zn, Pb and Cd. Although Pb, Zn and Cd display a lower solubility in overbank sediments compared to the mine tailing pond sediments, elevated concentrations of Pb, Zn and Cd are still found in the porewater of the overbank sediments. The considerable ‘actual’ and ‘potential’ mobility of Zn, Pb and Cd indicates that the mine pond tailing sediments and the overbank sediments downstream from the mine pond tailing represent a considerable threat for the environment. Besides the chemical remobilisation of metals from the sediments, the erosion of overbank sediments and the reworking of riverbed sediments act as a secondary source of pollution.  相似文献   

18.
Geostatistical techniques were used to evaluate the differences in the geochemistry of metals in the marine sediments along the Eastern Brazilian continental margin along the states of Ceará and Rio Grande do Norte (Northeastern sector) and Espírito Santo (Southeastern sector). The concentrations of Al, Fe, Mn, Ba, Cd, Cu, Cr, Ni, Pb, V, Hg, and Zn were obtained from acid digestion and quantified using flame atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The metals showed a similar order of concentration: Al > Fe > Ba > Mn > V > Ni > Pb > Cr > Zn > Cu, in both the Ceará; and Rio Grande do Norte shelf regions but different in the Espírito Santo shelf (Fe > Al > Mn > Ba > Zn > V > Cr > Ni > Pb > Cu. The concentrations of Hg and Cd were below the detection limit in all areas. A multivariate analysis revealed that the metals of siliciclastic origin on the continental shelf of Ceará are carried by Al. In addition, a large portion of metal deposits is connected to the iron and manganese oxides on the continental margin of Rio Grande do Norte. The metals from the continental supply on the coast of Espírito Santo (Cu, Ni, Ba, and Mn) are associated with Al; whereas Cr, Pb, V, and Zn are associated with iron in this southern area. Geochemical evaluations are needed to distinguish the origin and mineralogical differences of marine sediments within the regions. Scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) applied to the sediments from the coast of Ceará showed the morphological diversity of sediment grains: biological fragments, multifaceted particles, aggregates, and crystals occurred in the three regions analyzed. Among these grains, calcite, Mg-calcite, and aragonite were predominant in the northeastern sector, whereas silicates and other minerals were predominant the southeastern sector. Mg, K, Ti, and Zr as well as the lanthanides La and Ce were identified using SEM/EDS and added to the geochemical analysis of the data.  相似文献   

19.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   

20.
Simultaneous competitive adsorption behavior of Cd, Cu, Pb and Zn onto nine soils with a wide physical–chemical characteristics from Eastern China was measured in batch experiments to assess the mobility and retention of these metals in soils. In the competitive adsorption system, adsorption isotherms for these metals on the soils exhibited significant differences in shape and in the amount adsorbed. As the applied concentration increased, Cu and Pb adsorption increased, while Cd and Zn adsorption decreased. Competition among heavy metals is very strong in acid soils with lower capacity to adsorb metal cations. Distribution coefficients (K dmedium) for each metal and soil were calculated. The highest K dmedium value was found for Pb and followed by Cu. However, low K dmedium values were shown for Zn and Cd. On the basis of the K dmedium values, the selectivity sequence of the metal adsorption is Pb > Cu > Zn > Cd and Pb > Cu > Cd > Zn. The adsorption sequence of nine soils was deduced from the joint distribution coefficients (K dΣmedium). This indicated that acid soils with low pH value had lower adsorption capacity for heavy metals, resulting in much higher risk of heavy metal pollution. The sum of adsorbed heavy metals on the soils could well described using the Langmuir equation. The maximum adsorption capacity (Q m) of soils ranged from 32.57 to 90.09 mmol kg−1. Highly significant positive correlations were found between the K dΣmedium and Q m of the metals and pH value and cation exchange capacity (CEC) of soil, suggesting that soil pH and CEC were key factors controlling the solubility and mobility of the metals in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号