首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过三维数值模拟研究含湿氢氧燃烧和冷却水喷雾掺混蒸发过程,采用k-ε湍流模型及EBU湍流燃烧模型进行气相各物理场计算,利用离散相模型计算冷却水喷雾液滴蒸发过程,基于上述模型对燃烧器中掺混燃烧过程进行三维仿真计算。经过计算,得到燃烧器中各物理量分布和冷却水液滴运动蒸发过程。针对不同的入口含湿工况和冷却水掺混工况进行仿真计算,得到各参数对燃烧火焰结构和流场的影响。  相似文献   

2.
基于SST k-ω湍流模型的二维圆柱涡激振动数值仿真计算   总被引:1,自引:1,他引:0  
随着海洋工程逐渐向深海发展,广泛使用的柔性立管因为高频振动很容易受到严重的损伤。因此对于这类细长柔性结构的涡激振动(VIV)研究是当今的一个热点,同时随着计算机的快速发展,CFD(计算流体力学)技术成为研究涡激振动问题不可或缺的一种方法。本文采用雷诺平均纳维尔-斯托克斯(RANS)方程,并结合SST k-ω湍流模型,研究低质量比弹性支撑刚性圆柱体的涡激振动问题。从振幅响应、频率响应、3个响应分支的水动力性能、尾涡模式等方面和Williamson相关实验作对比。结果表明,SST k-ω湍流模型能够有效准确地模拟圆柱绕流的涡激振动。本文丰富了海洋工程的理论研究,为柔性立管的实际应用提供了一定的理论指导。  相似文献   

3.
螺旋桨旋涡发放数值模拟   总被引:1,自引:0,他引:1  
基于LSDYNA软件和任意拉格朗日—欧拉(ALE)方法,建立螺旋桨与流体相互作用的有限元模型,数值计算螺旋桨固定桨叶在前方来流下的流体动力特性和结构力学性能,分析总结桨叶后方旋涡运动和桨叶内部应力变化的规律。结果表明,螺旋桨桨叶的不规则形状导致了桨叶后方旋涡的相互作用,桨叶单元所在位置的厚度以及该位置与约束位置的距离决定了单元应力的大小。数值模拟得出的结论对研究螺旋桨"唱音"现象有一定的参考价值。  相似文献   

4.
海流作用下悬浮隧道缆索的运动响应   总被引:1,自引:0,他引:1  
考虑参数激励频率,利用涡激振动方程,应用伽辽金和龙格库塔数值积分法,计算出不同流速下参数激励对缆索1阶振动的影响;进一步计算隧道—缆索耦合作用下缆索的振动响应。计算结果表明参数激励为缆索固有频率2倍时,缆索响应最大;隧道对缆索振动有明显的抑制作用。  相似文献   

5.
不同湍流模型下圆柱涡激振动的计算比较   总被引:3,自引:0,他引:3  
为应用计算流体力学的方法模拟圆柱体的涡激振动问题,文章采用有限体积法结合两种不同的湍流模型(RNG k-ε和SST k-ω湍流模型)求解时间平均的纳维尔-斯托克斯方程(RANS),对低质量比弹性支撑的刚性圆柱体在均匀来流中的的涡激振动问题进行了研究。计算对象参照Govardhan和Williamson的物理模型实验中的参数,通过比较两种湍流模型下圆柱体的振幅响应、频率响应及三个响应分支的水动力系数和尾涡模式,分析了两种湍流模型模拟结果的差异及原因,结果表明:RNG k-ε湍流模型和SST k-ω湍流模型的模拟结果差异很大,不论在振幅响应和频率响应上的计算上,还是对升力的谱分析上,SST k-ω模型的计算结果都更接近于真实的物理现象,并且采用SST k-ω湍流模型成功地模拟出了2P模式。因此从整体上说,SST k-ω湍流模型的模拟效果要优于RNG k-ε湍流模型。  相似文献   

6.
波流共同作用下隔水管动力响应非线性分析   总被引:2,自引:2,他引:2  
为了探讨在波浪海流共同作用下隔水管的动力响应及涡激振动力分析,根据三维空间中隔水管运动的微分控制方程,以:MatteoIuca改进的Vanderpol尾流振子模型为基础计算涡激振动时隔水管与流体之间的相互作用.通过Hermite插值函数对隔水管的运动微分方程进行有限元离散,基于非线性分析理论利用当前拉氏描述(UL)建立了考虑几何非线性、预应力、涡激流固耦合等复杂因素影响的综合非线性增量平衡方程,并采用New-ton-Raphson迭代法和Newmark方法相结合的方法建立了空间隔水管非线性涡激动力响应的增量迭代算法.最后给出了考虑几何非线性与对外界荷载作用简化的位移分布包络线.以及横向涡激振动响应曲线.计算结果表明,所采用的方法正确、有效,可以为隔水管的生产没计及理论分析提供依据.  相似文献   

7.
  目的  为提高海洋结构物的安全性能,针对波浪与结构物相互作用的问题开展完全非线性数值模拟研究。  方法  基于三维完全非线性时域势流理论及高阶边界元法(HOBEM),建立波浪与结构物相互作用的开敞水域模型。采用速度势分离技术将整个问题分解为入射部分和散射部分,入射势由理论解给定。采用混合欧拉—拉格朗日(MEL)方法追踪瞬时自由水面的流体质点,并采用四阶龙格—库塔法对瞬时自由水面进行更新。引进虚拟函数计算波浪载荷,而非直接求解速度势的时间导数。在自由水面的外侧设置人工阻尼层,防止波浪从远场边界反射。自由水面网格仅在初始时刻生成一次,并采用弹簧近似法在不改变网格节点顺序的情况下对瞬时水面进行网格重构,以避免数值不稳定。  结果  在验证所提出数值模型有效性和精确性的基础上,针对某浮式生产储卸油轮(FPSO)模型的水动力特性进行数值模拟,发现考虑非线性影响时FPSO的运动响应在共振区段明显增大,证明了传统线性方法的预报结果趋于危险。  结论  研究成果既可为海洋浮式结构物的设计提供更可靠的预报工具,也可为其实际应用提供理论依据。  相似文献   

8.
应用任意拉格朗日-欧拉(ALE)算法对固液两相流流场中颗粒的沉降运动进行了真正直接数值模拟。在牛顿流体中通过积分黏性应力和压力获得颗粒的受力跟踪颗粒运动,使用有限元方法数值求解流场的N-S方程,模型不需经验假设。通过模拟颗粒在不同宽度的竖直通道中的沉降来研究颗粒的沉降规律和竖直通道的宽度对颗粒沉降运动的影响作用。模拟结果表明随着通道宽度的增大,颗粒沉降由稳定沉降转变为不规则摆动沉降,沉降雷诺数开始不断增大,随后又趋于稳定。随着通道宽度的增大,其对颗粒沉降的抑制作用变弱。  相似文献   

9.
娄敏  轩红超 《船海工程》2015,(2):141-145
利用Fluent软件,运用动网格技术及用户自定义接口编程,通过求解N-S方程、RNG湍流模型以及结构动力学模型实现流固耦合,对串联间距为4D的等径立管进行数值模拟,分析在尾流干涉下立管的涡激振动。基于数值模拟结果分析:串联间距为4D时上下游立管都有漩涡脱落;下游立管在尾流干涉下,考虑流固耦合时相比固定立管时所受升力增大,立管振动有"失谐",涡激振动到达"锁定"状态以及之后的一段约化速度范围内,升力系数呈现多频现象,且有一个频率总是接近立管固有频率,随着约化速度增大,涡激振动远离"锁定"状态多频现象逐渐减弱,同时升力系数幅值周期性变化,下游立管剧烈振动使其自身尾流区出现"断层"。  相似文献   

10.
潜艇的潜望镜在升起的时候由于水流的冲击作用会产生弯曲及振动等问题。严重的弯曲及振动响应会影响艇内人员对海面的观察,降低潜望镜的测量精度,甚至损坏潜望镜。因此水流载荷作用下的潜望镜力学特性是潜望镜设计、使用等环节的重要参考。文章针对上述问题,设计了潜望镜实艇实验,采用了裸光纤光栅准分布式测量技术,实现了对潜望镜水流载荷作用下的动应变响应的快速测量。通过实测数据对潜望镜的静力与动力特性进行了分析,并与理论分析、数值模拟结果进行了对比。结果表明:当潜艇在10kns以内航速行驶时,潜望镜受到的拟静水流力及振动情况较小,实测结果与计算模拟结果吻合较好;当潜艇在10kns以上航速行驶的时候,潜望镜会发生强烈的涡激振动问题,实测结果远大于计算模拟结果。文中研究工作对潜望镜的设计、日常使用与维护等具有很好的参考价值。  相似文献   

11.
针对水中悬浮隧道在偶然状况下受到的潜艇撞击问题,文章采用流固耦合方法,建立了撞击作用下浮筒式悬浮隧道的有限元动态模型,分别撞击跨中、隧道四分之一跨、浮筒,分析隧道变形、撞击力、连接钢管拉杆力、隧道端部约束力、隧道动能情况。结果表明:撞击作用下,隧道整体变形明显,结构内力大。不同撞击位置处,悬浮隧道在水下的结构变形和受力行为区别明显。对此,有必要考虑撞击位置进行悬浮隧道的抗撞击设计。  相似文献   

12.
Stress evaluation of a submerged floating tunnel (SFT) is an issue important for determining the section dimensions required to resist environmental loads. However, the complex interaction between an SFT and surrounding fluid has confined most research on SFTs to longitudinal global time-history analyses based on Morison's equation [1]. Even though these analyses give sufficient information in the longitudinal direction, too little information about the circumferential direction compels an SFT section to be designed conservatively. This means that SFT design requires additional information on the structural behavior of the tunnel in the circumferential direction for efficient design. Accordingly, a supplementary approach by which to obtain structural responses in the circumferential direction is introduced in this paper. Upon consideration of the static responses equivalent to the dynamic behavior, three-dimensional (3-D) finite-element analyses of an SFT were performed by application of static loads corresponding to dynamic loads equivalent to those of wave, current and earthquake. The validation of each equivalent static load was supported by the results from comparison of the tension forces in mooring lines obtained using OrcaFlex [2] and ABAQUS [3]. These were used mainly for longitudinal dynamic analysis and 3-D stress evaluation, respectively, of an SFT. Based on the stresses obtained in the longitudinal and circumferential directions, the selection of suitable section dimensions for an SFT is considered.  相似文献   

13.
悬浮隧道作为一种新型的跨水域交通方式近年来引起各国学者广泛的关注,文章在介绍悬浮隧道研究背景与各国发展状况的基础上,首先梳理了悬浮隧道断面形式与管体连接方式的相关研究,分析了不同断面形式的优缺点,概述了管段之间连接、支撑悬浮系统连接以及隧道两端连接的相关成果。文章重点围绕悬浮隧道水动力问题,系统梳理了针对悬浮隧道水动力荷载、不同荷载作用下的运动响应及锚索系统的涡激振动及其抑制问题的研究,最后通过总结前人的研究成果,提出了悬浮隧道水动力研究方面需要进一步关注的问题。  相似文献   

14.
To achieve rational design in waves for a submerged floating tunnel which has emerged as a new offshore transportation infrastructure, it's necessary to understand its hydrodynamic behavior. For simple but accurate estimation of hydrodynamic forces, a theoretical method is proposed and the tests with physical models in a wave flume were carried out for verification. Morison's equation was used to estimate wave loads composed of inertia force and drag force. Forces calculated by applying the linear wave theory to Morison's equation coincided well with those measured by the tests. The test results showed that mooring systems played a significant role in the movement of the submerged floating tunnel in waves. A pendulum model could be used to describe the motion of the submerged floating tunnel with a single vertical mooring. Based on the verified relations, a simple slack condition which causes the submerged floating tunnel to be unstable was also proposed. The simplified approach proposed by this study proved to be useful in designing the submerged floating tunnel in the initial stage.  相似文献   

15.
Hydrodynamic load and motion response are the first considerations in the structural design of a submerged floating tunnel (SFT). Currently, most of the relevant studies have been based on a two-dimensional model test with a fixed or fully free boundary condition, which inhibits a deep investigation of the hydrodynamic characteristics with an elastic constraint. As a result, a series of difficulties exist in the structural design and analysis of an SFT. In this study, an SFT model with a one-degree-of-freedom vertical elastically truncated boundary condition was established to investigate the motion response and hydrodynamic characteristics of the tube under the wave action. The effect of several typical hydrodynamic parameters, such as the buoyancy-weight ratio, γ, the relative frequency, f/fN, the Keulegan–Carpenter (KC) number, the reduced velocity, Ur, the Reynolds number, Re, and the generalized Ursells number, on the motion characteristics of the tube, were selectively analyzed, and the reverse feedback mechanism from the tube's motion response to the hydrodynamic loads was confirmed. Finally, the critical hydrodynamic parameters corresponding to the maximum motion response at different values of γ were obtained, and a formula for calculating the hydrodynamic load parameters of the SFT in the motion state was established. The main conclusions of this study are as follows: (i) Under the wave action, the motion of the SFT shows an apparent nonlinearity, which is mainly caused by the intensive interaction between the tube and its surrounding water particles, as well as the nonlinearity of the wave. (ii) The relative displacement of the tube first increases and then decreases with increasing values of f/fN, Ur, KC number, Re, and the generalized Ursells number. (iii) γ is inversely proportional to the maximum relative displacement of the tube and the wave force on the tube in its motion direction. (iv) Under the motion boundary condition (as opposed to the fixed boundary condition), the peak frequency of the wave force on the SFT in its motion direction decreases and approaches the natural vibration frequency of the tube, whereas the wave force perpendicular to the motion direction increases. When the incident wave frequency is close to the natural vibration frequency of the tube, the tube resonates easily, leading to an increased wave force in the motion direction. (v) If the velocity in the Morison equation is substituted by the water particle velocity measured when the tube is at its equilibrium position, the inertia coefficient in the motion direction of the tube is linearly related to its displacement, whereas that in the direction perpendicular to the motion direction is logarithmically related to its displacement.  相似文献   

16.
Submerged floating tunnel (SFT) is an innovative cable-supported structural system for crossing deep and long-distance ocean environments. In the complex ocean environment, the construction of SFT needs to consider wave and current forces. Specific construction measures and control also require in-depth study and understanding of the dynamic response of SFT under such environmental loads. In this study, the dynamic response of SFT and cable forces under the action of waves alone and wave-current interactions are investigated by using a large wave-current basin. A total of 138 regular wave and wave-current cases were conducted during the experiments, and the influence of waves and wave-current interactions on the dynamic response of SFT and cable forces are discussed in detail by combining experimental data with corresponding analysis. Results show that the wave height, current velocity, and ratio of wavelength to structure size are important factors affecting the dynamic response of SFT and cable forces. The multi-anchor cable arrangement used in the present experimental tests distribute cable force more effectively and reduce the potential safety hazard caused by cable breakage. This study can provide a useful reference for the construction and control of the single SFT segment under construction in a complex ocean environment, especially under the interaction of waves and currents.  相似文献   

17.
The effects of surface roughness as induced by marine fouling on the hydrodynamic forces on a submerged floating tunnel (SFT) are experimentally and numerically investigated in detail at Reynolds numbers Re = 8.125 × 103–5.25 × 104. A sensitivity analysis to different roughness parameters including roughness height, skewness, coverage ratio, and spatial arrangement is performed. In addition, an optimized parametric cross-section for an SFT is proposed, and the hydrodynamic performance of the parametric shape and circular SFT cross-section shape with roughness elements is compared. The pressure distribution along the SFT, flow separation and wake characteristics are analyzed to provide a systematic insight into the fundamental mechanism relating the roughness parameters and flow around an SFT. In order to better understand the nonlinear relationships among structural geometry, roughness parameters, flow states, and structural response, an artificial intelligence method using Random Forest (RF) for feature importance ranking is applied. The results show that with the parametric shape, the hydrodynamic forces on the fouled SFT can be effectively mitigated. The roughness height and coverage ratio affect the equivalent blockage and hence, change flow separation and recirculation length in the wake. Lower skewness of the roughness elements can increase the critical Re by changing the relative roughness parameter. Horizontal arrangement of the roughness elements on an SFT generally results in the largest hydrodynamic forces, compared to staggered and vertical distributions. Throughout the feature importance ranking, the flow regime is found to be the most important feature of the hydrodynamics of the SFT. In addition, the SFT cross-section shape and roughness coverage ratio play a dominant role.  相似文献   

18.
This paper is concerned with the hydroelastic problem of a pontoon-type, very large floating structure (VLFS) edged with the perforated plates, non-perforated plates or their combination anti-motion device both numerically and experimentally. A direct time domain modal expansion method, taking amount of the time domain Kelvin sources in hydrodynamic forces, in which the fluid flows across the perforated anti-motion plate by applying the Darcy's law, is applied to the fluid–structure interaction problem. A quarter of numerical model is built based on the symmetry of flow field and structure in hydrodynamic forces, and special care is paid to the rapid and accurate evaluation of time domain free-surface Green functions and its spatial derivatives in finite water depth by using interpolation–tabulation method. Using the developed numerical tools and the model tests conducted in a wave basin, the response-reduction efficiency of the perforated plates is systematically assessed for various wave and anti-motion plate parameters, such as plate width, porosity and submergence depth. As a result of the parametric study, the porosity 0.11 is selected as the optimal porosity, and the relationship between the porosity and the porous parameter is developed by using the least-squares fitting scheme. After simulation and verification, the dual anti-motion plates which are the perforated-impermeable-plate combination attached to the fore-end and back-end of the VLFS, are designed for more wave energy dissipation and added damping. Considering variation of the water depths in offshore, discussion on the effectiveness of these anti-motion devices at different water depths is highlighted.  相似文献   

19.
A floating bridge and a floating platform can serve as a transport channel between land and sea. They will interact with each other in the wave environment. In this paper, the dynamic response characteristics of a floating bridge under irregular waves and regular waves are studied by means of model tests and numerical calculations. The results of model test and numerical calculation based on potential flow theory are basically consistent and can be mutually verified. By comparing and analyzing the dynamic response results of the floating bridge under the condition of “with floating platform” and “without floating platform”, some conclusions are drawn. The floating platform will have a shielding effect on waves coming from the sea. Due to the shielding effect of the floating platform, the motions in heave, surge and pitch of the floating bridge are evidently diminished. Among them, the motion response of the pontoon near the floating platform decreases most obviously. The floating platform provides a relatively stable marine environment for the floating bridge, thereby improving the survival state of the floating bridge.  相似文献   

20.
利用FLUENT中的RNG k-ε湍流模型和VOF模型对淹没式丁坝周围流场进行了数值模拟研究.计算结果表明,由于丁坝的束水作用,主流区的流速增大,丁坝下游出现了较大的回流区,回流区的流速较小.同时,水流在丁坝处发生了壅水现象,靠近丁坝上游的水位增高,经过丁坝后的水位迅速下降,并在丁坝下游沿程逐渐恢复.计算结果和试验观察与丁坝绕流客观规律相符合,流速计算结果与试验数据吻合较好,说明该模型可用于航道整治中有关丁坝的工程计算中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号