首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The main aim of this paper is to prove the Calderón–Zygmund estimates for a general nonlinear parabolic equation of p(xt)-Laplacian type in the weighted Lorentz spaces. Note that we only require some mild conditions on the nonlinearity of coefficients and the underlying domain. The result for these nonlinear parabolic equations is new even in the particular case when the growth p(xt) is a constant.  相似文献   

2.
In this paper we analyze the behavior of solutions to a nonlocal equation of the form J ? u (x) ? u (x) = f (x) in a perforated domain Ω ? A ?? with u = 0 in \(A^{\epsilon } \cup {\Omega }^{c}\) and an obstacle constraint, uψ in Ω ? A ?? . We show that, assuming that the characteristic function of the domain Ω ? A ?? verifies \(\chi _{\epsilon } \rightharpoonup \mathcal {X}\) weakly ? in \(L^{\infty }({\Omega })\), there exists a weak limit of the solutions u ?? and we find the limit problem that is satisfied in the limit. When \(\mathcal {X} \not \equiv 1\) in this limit problem an extra term appears in the equation as well as a modification of the obstacle constraint inside the domain.  相似文献   

3.
We obtain new exact solutions U(x, y, z, t) of the three-dimensional sine-Gordon equation. The three-dimensional solutions depend on an arbitrary function F(α) whose argument is a function α(x, y, z, t). The ansatz α is found from an equation linear in (x, y, z, t) whose coefficients are arbitrary functions of α that should satisfy a system of algebraic equations. By this method, we solve the classical and a generalized sine-Gordon equation; the latter additionally contains first derivatives with respect to (x, y, z, t). We separately consider an equation that contains only the first derivative with respect to time. We present approaches to the solution of the sine-Gordon equation with variable amplitude. The considered methods for solving the sine-Gordon equation admit a natural generalization to the case of integration of the same types of equations in a space of arbitrarily many dimensions.  相似文献   

4.
The solutions to the Dirichlet problem for two degenerate elliptic fully nonlinear equations in n + 1 dimensions, namely the real Monge–Ampère equation and the Donaldson equation, are shown to have maximum rank in the space variables when n ≤ 2. A constant rank property is also established for the Donaldson equation when n = 3.  相似文献   

5.
Integral transforms of the lognormal distribution are of great importance in statistics and probability, yet closed-form expressions do not exist. A wide variety of methods have been employed to provide approximations, both analytical and numerical. In this paper, we analyse a closed-form approximation \(\widetilde {\mathcal {L}}(\theta )\) of the Laplace transform \(\mathcal {L}(\theta )\) which is obtained via a modified version of Laplace’s method. This approximation, given in terms of the Lambert W(?) function, is tractable enough for applications. We prove that ~(??) is asymptotically equivalent to ?(??) as ??. We apply this result to construct a reliable Monte Carlo estimator of ?(??) and prove it to be logarithmically efficient in the rare event sense as ??.  相似文献   

6.
Let G =(V,E) be a locally finite graph,whose measure μ(x) has positive lower bound,and A be the usual graph Laplacian.Applying the mountain-pass theorem due to Ambrosetti and Rabinowitz(1973),we establish existence results for some nonlinear equations,namely △u+hu=f(x,u),x∈V.In particular,we prove that if h and f satisfy certain assumptions,then the above-mentioned equation has strictly positive solutions.Also,we consider existence of positive solutions of the perturbed equation △u+hu=f(x,u)+∈g.Similar problems have been extensively studied on the Euclidean space as well as on Riemannian manifolds.  相似文献   

7.
Reaction–diffusion equations with a nonlinear source have been widely used to model various systems, with particular application to biology. Here, we provide a solution technique for these types of equations in N-dimensions. The nonclassical symmetry method leads to a single relationship between the nonlinear diffusion coefficient and the nonlinear reaction term; the subsequent solutions for the Kirchhoff variable are exponential in time (either growth or decay) and satisfy the linear Helmholtz equation in space. Example solutions are given in two dimensions for particular parameter sets for both quadratic and cubic reaction terms.  相似文献   

8.
In the present study, we apply function transformation methods to the D-dimensional nonlinear Schrödinger (NLS) equation with damping and diffusive terms. As special cases, this method applies to the sine-Gordon, sinh-Gordon, and other equations. Also, the results show that these equations depend on only one function that can be obtained analytically by solving an ordinary differential equation. Furthermore, certain exact solutions of these three equations are shown to lead to the exact soliton solutions of a D-dimensional NLS equation with damping and diffusive terms. Finally, our results imply that the planar solitons, N multiple solitons, propagational breathers, and quadric solitons are solutions to the sine-Gordon, sinh-Gordon, and D-dimensional NLS equations.  相似文献   

9.
Given a class \(\mathcal{F(\theta)}\) of differential equations with arbitrary element θ, the problems of symmetry group, nonclassical symmetry and conservation law classifications are to determine for each member \(f\in\mathcal{F(\theta)}\) the structure of its Lie symmetry group G f , conditional symmetry Q f and conservation law \(\mathop {\rm CL}\nolimits _{f}\) under some proper equivalence transformations groups.In this paper, an extensive investigation of these three aspects is carried out for the class of variable coefficient (1+1)-dimensional nonlinear telegraph equations with coefficients depending on the space variable f(x)u tt =(g(x)H(u)u x ) x +h(x)K(u)u x . The usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements are first constructed. Then using the technique of variable gauges of arbitrary elements under equivalence transformations, we restrict ourselves to the symmetry group classifications for the equations with two different gauges g=1 and g=h. In order to get the ultimate classification, the method of furcate split is also used and consequently a number of new interesting nonlinear invariant models which have non-trivial invariance algebra are obtained. As an application, exact solutions for some equations which are singled out from the classification results are constructed by the classical method of Lie reduction.The classification of nonclassical symmetries for the classes of differential equations with gauge g=1 is discussed within the framework of singular reduction operator. This enabled to obtain some exact solutions of the nonlinear telegraph equation which are invariant under certain conditional symmetries.Using the direct method, we also carry out two classifications of local conservation laws up to equivalence relations generated by both usual and extended equivalence groups. Equivalence with respect to these groups and correct choice of gauge coefficients of equations play the major role for simple and clear formulation of the final results.  相似文献   

10.
In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.  相似文献   

11.
The small free vibrations of an infinite circular cylindrical shell rotating about its axis at a constant angular velocity are considered. The shell is supported on n absolutely rigid cylindrical rollers equispaced on its circle. The roller-supported shell is a model of an ore benefication centrifugal concentrator with a floating bed. The set of linear differential equations of vibrations is sought in the form of a truncated Fourier series containing N terms along the circumferential coordinate. A system of 2Nn linear homogeneous algebraic equations with 2Nn unknowns is derived for the approximate estimation of vibration frequencies and mode shapes. The frequencies ω k , k = 1, 2, …, 2Nn, are positive roots of the (2Nn)th-order algebraic equation D2) = 0, where D is the determinant of this set. It is shown that the system of 2Nn equations is equivalent to several independent systems with a smaller number of unknowns. As a consequence, the (2Nn)th-order determinant D can be written as a product of lower-order determinants. In particular, the frequencies at N = n are the roots of algebraic equations of an order is lower than 2 and can be found in an explicit form. Some frequency estimation algorithms have been developed for the case of N > n. When N increases, the number of found frequencies also grows, and the frequencies determined at N = n are refined. However, in most cases, the vibration frequencies can not be found for N > n in an explicit form.  相似文献   

12.
Let Ω R n be a bounded domain, H = L 2 (Ω), L : D(L) H → H be an unbounded linear operator, f ∈ C(■× R, R) and λ∈ R. The paper is concerned with the existence of positive solutions for the following nonlinear eigenvalue problem Lu = λf (x, u), u ∈ D(L), which is the general form of nonlinear eigenvalue problems for differential equations. We obtain the global structure of positive solutions, then we apply the results to some nonlinear eigenvalue problems for a second-order ordinary differential equation and a fourth-order beam equation, respectively. The discussion is based on the fixed point index theory in cones.  相似文献   

13.
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on ?2. The fields are associated with the vertices and an equation of the form Q(x 1, x 2, x 3, x 4) = 0 relates four vertices of one cell. The integrability of equations is understood as 3D-consistency, which means that it is possible to impose equations of the same type on all faces of a three-dimensional cube so that the resulting system will be consistent. This allows one to extend these equations also to the multidimensional lattices ? N . We classify integrable equations with complex fields x and polynomials Q multiaffine in all variables. Our method is based on the analysis of singular solutions.  相似文献   

14.
For some classes of one-dimensional nonlinear wave equations, solutions are Hölder continuous and the ODEs for characteristics admit multiple solutions. Introducing an additional conservation equation and a suitable set of transformed variables, one obtains a new ODE whose right hand side is either Lipschitz continuous or has directionally bounded variation. In this way, a unique characteristic can be singled out through each initial point. This approach yields the uniqueness of conservative solutions to various equations, including the Camassa-Holm and the variational wave equation utt ? c(u)(c(u)ux )x = 0, for general initial data in H1(R).  相似文献   

15.
A nonlinear heat equation with a special source on a straight line is considered. The family of exact solutions to this equation that have the form p(t) + q(t)cosx/√2, where functions p(t) and q(t) satisfy a certain dynamic system, is constructed. The system is comprehensively analyzed, and the behavior of p(t) and q(t) depending on initial data is revealed. It is found that some of the unbounded solutions from the aforementioned family are close, in a certain sense, to an analytical solution to the heat equation with power nonlinearities. The Cauchy problem for the equations considered is studied as well. It is proved that, depending on the initial solution function, solutions may develop in a blow-up regime or decay.  相似文献   

16.
The N = 2 supersymmetric KdV equations are studied within the framework of Hirota bilinear method. For two such equations, namely N = 2, a = 4 and N = 2, a = 1 supersymmetric KdV equations, we obtain the corresponding bilinear formulations. Using them, we construct particular solutions for both cases. In particular, a bilinear Bäcklund transformation is given for the N = 2, a = 1 supersymmetric KdV equation.  相似文献   

17.
We obtain blowup conditions for the solutions of initial boundary-value problems for the nonlinear equation of ion sound waves in a hydrogen plasma in the approximation of “hot” electrons and “heavy” ions. A specific characteristic of this nonlinear equation is the noncoercive nonlinearity of the form ?t|?u|2, which complicates its study by any energy method. We solve this problem by the Mitidieri–Pohozaev method of nonlinear capacity.  相似文献   

18.
We consider viscous Burgers equations in one dimension of space and derive their solutions from stochastic variational principles on the corresponding group of homeomorphisms. The metrics considered on this group are L p metrics. The velocity corresponds to the drift of some stochastic Lagrangian processes. Existence of minima is proved in some cases by direct methods. We also give a representation of the solutions of viscous Burgers equations in terms of stochastic forward-backward systems.  相似文献   

19.
The third-order nonlinear differential equation (u xx ? u) t + u xxx + uu x = 0 is analyzed and compared with the Korteweg-de Vries equation u t + u xxx ? 6uu x = 0. Some integrals of motion for this equation are presented. The conditions are established under which a traveling wave is a solution to this equation.  相似文献   

20.
The paper suggests an approach to one-dimensional pseudodifferential equations of nonnegative order, whose symbols are of the form A 1(ξ) + th(kx + ω)A 2(ξ). The method is based on reduction of the considered pseudodifferential equation to an integral equation. Some integral representations of solutions are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号