首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Ce—Y—TZP陶瓷中的马氏体相变与形状记忆效应   总被引:2,自引:1,他引:1  
用共沉淀法制备了8mol?O2-0.25mol%Y2O3-ZrO2(8Ce-0.25Y-TZP)、8Ce-0.50Y-TZP和8Ce-0.75Y-TZP3种成分的超细粉,于1500℃分别烧结2、3、6h成形。8Ce-0.25Y-TZP的马氏体相变开始温度Ms在室温以上,室温下基本上不具有形状记忆效应;8Ce-0.50Y-TZP的形状记忆效应最佳,其中烧结6h的试样最大可恢复应变为1.18%;8Ce-0.75Y-TZP的形状记忆效应较差。Ms与材料的强度密切相关,晶粒大小和密度等也有影响。  相似文献   

2.
高密度球形LiNi_(0.8)Co_(0.2)O_2的制备及性能   总被引:6,自引:0,他引:6  
采用控制结晶法合成球形 β- Ni0 .8Co0 .2 (OH) 2 ,与L i OH.H2 O 混合 ,在 75 0℃通 O2 热处理 8h 合成球形L i Ni0 .8Co0 .2 O2 粉末。用 X光衍射和扫描电镜分析对 β- Ni0 .8Co0 .2 (OH) 2 和 L i Ni0 .8Co0 .2 O2 粉末的结构进行了表征。充放电测试表明该球形 L i Ni0 .8Co0 .2 O2 正极材料具有优良的电化学性能 :首次充电比容量为 2 17m A.h.g- 1 ,放电比容量为172 m A.h.g- 1 ,5 0次充放电循环后保持初始放电比容量的97.5 %。该球形 L i Ni0 .8Co0 .2 O2 粉末的振实密度高达 2 .8g.cm- 3,远高于一般非球形 L i Ni0 .8Co0 .2 O2 正极材料。高密度球形 L i Ni0 .8Co0 .2 O2 正极材料用于锂离子电池可以显著提高电池的能量密度。  相似文献   

3.
B_4C粉末的气流粉碎及烧结   总被引:1,自引:1,他引:0  
采用气流粉碎对B4C粗粉 (比表面积为 0 5 2m2 g,中位粒度为 2 0 4μm)进行粉碎实验 ,研究了气流粉碎次数对粉末性能、压坯密度和烧结密度的影响及成形压力和烧结温度对B4C烧结密度的影响 .研究结果表明 :当粉碎次数达到 3次后 ,可获得中位粒度小于 1μm的B4C超细粉末 ;经过 4次气流粉碎的B4C超细粉末 ,其比表面积为2 5 3m2 g ,中位粒度为 0 5 6 μm ;该粉末于 2 2 5 0℃无压烧结 1h ,其烧结密度为 2 0 7g cm3 ,达到理论密度的82 .5 % ,平均晶粒粒度为 5 0 μm .可见 ,气流粉碎能改善B4C的烧结性 .  相似文献   

4.
YCe-TZP陶瓷的低温时效   总被引:2,自引:2,他引:0  
对化学共沉淀法制备的3Y-TZP,3Y2Ce-TZP(3%Y2O3-2%CeO2-ZrO2)和3Y4Ce-TZP(3%Y2O3-4%CeO2-ZrO2)纳米粉末进行了1450℃无压烧结,研究了这3种TZP陶瓷在250℃水蒸汽中时效150h前后抗弯强度和显微结构的变化.此外,结合红外光谱和EDAX能谱分析,探讨了3Y-TZP的时效老化机理.结果表明随着CeO2含量增加,TZP时效后抗弯强度的降低幅度减小,3Y4Ce-TZP几乎不发生时效老化现象;在时效过程中,3Y4Ce-TZP表面形成了CeO2保护层,防止了Y-OH键的形成,从而有效地抑制了t→m时效相变.  相似文献   

5.
研究了 0 .6 3C 1 .75Si 1 .6 8MnTRIP钢室温低应变速率下的拉伸性能 .试验用钢的等温淬火为 :90 0℃加热 ,保温 2 0min ,34 0℃等温 2h.当应变速率由 4 .6× 1 0 -3 s-1降至 4 .6× 1 0 -6s-1时 ,高碳硅锰TRIP钢的延伸率由 1 4 %~ 1 5 %提高到 2 2 %左右 ;屈服强度由 1 0 1 5MPa提高到 1 1 98MPa;极限强度由 1 4 4 8MPa提高到 1 5 4 6MPa;拉伸试样中残留奥氏体量减少 .表明该钢在低应变速率下应变诱导相变、相变诱发塑性能够充分进行 .因此 ,该钢种特别适合于用作在岩石蠕变条件下工作的煤巷超高强度锚杆材料  相似文献   

6.
论述了磁性氧化铁牺牲阳极生产的必要性、工艺技术条件 (压块压力、烧结温度、烧结时间 )及产品性能等。该阳极的化学成分为 90 %mol (以Fe2 O3 表示 )的Fe3 O4和 10 %molMe1O混合物 ,粒度 <16 μm。研制出的磁性氧化铁牺牲阳极样品结构致密 ,电阻率小 (0 .0 0 7Ω·cm) ,在 2 0 %HCl溶液中腐蚀失重率为 0 .72 % h。结果表明 :采用粉末冶金法生产此种磁性氧化铁牺牲阳极可以做到工艺顺利、牺牲阳极的结构致密、电阻率小、抗腐蚀性能良好。其中以 11# 牺牲阳极的性能为最好。其工艺条件为成型压力 1 2t cm2 ,烧结温度 110 0℃ ,烧结时间 5h。  相似文献   

7.
掺8mol%Y2O3的纳米ZrO2粉体中加入0-5wt%纳米Al2O3,在1100℃、1200℃、1300℃不同温度下烧结2h,烧结样品在烧结温度达1200℃以上,掺1wt%以上的纳米Al2O3的四方相完全转变为立方相。初步探讨掺纳米Al2O3的8YSZ陶瓷烧结体相变机理及纳米Al2O3对8YSZ烧结体的晶参数和电导率影响。  相似文献   

8.
固相法合成负热膨胀性粉体ZrW2O8   总被引:24,自引:6,他引:18  
以分析纯ZrO2和WO3为原料,用固相法制备了负热膨胀材料ZrW2O8粉体.以X射线粉末衍射、扫描电子显微镜分别对粉体进行物相分析和形貌观测;通过高温X射线衍射以及Powder X软件计算不同温度下的晶胞参数,从而确定热膨胀系数.结果表明经1 220℃保温3 h制备出的高纯度ZrW2O8粉体为单一立方结构,平均粒径为0.5μm;ZrW2O8粉体有显著的负热膨胀特性,在室温到150℃范围内,所得ZrW2O8粉体热膨胀系数为-11.58×10-6K-1;200~500℃范围内,热膨胀系数为-3.77×10-6K-1;在整个温度范围内平均热膨胀系数为-6.31×10-6K-1.  相似文献   

9.
为了提高燃料燃烧效率和磁铁矿氧化速度、降低固体燃料用量和提高烧结矿强度 ,对添加剂强化烧结过程进行了研究 .结果表明 :分别将 0 .1‰添加剂加入到钒钛磁铁精矿和低氟磁铁精矿中 ,烧结矿利用系数分别提高0 .0 4~ 0 .0 5t (m2 ·h)和 0 .0 2~ 0 .0 3t (m2 ·h) ,转鼓强度分别从 6 6 .8%提高到 6 8.7%和从 6 3.82 %提高到 6 7.1 6 % ,每吨烧结矿节省焦粉 3kg ;添加剂可以提高磁铁矿的氧化速度 ,降低焦粉热解温度 ;将 0 .2‰添加剂加到焦粉中 ,焦粉的开始热解温度从 46 0℃降到 40 0℃ ,热解终止温度从 72 0℃降到 5 6 0℃ .  相似文献   

10.
载体自转晶B-Al-MFI型沸石膜的原位合成与表征   总被引:5,自引:0,他引:5  
在乙胺和水混合蒸汽相中 ,首次通过载体自转晶 ,在多孔玻璃片表面原位合成了B Al MFI型沸石膜 FEAM分析表明 ,沸石膜的化学组成为w(B2 O3 ) =3.7% ,w(Al2 O3 ) =0 .5 5 % ,w(SiO2 ) =95 .2 5 % ,w(Na2 O) =0 .5 0 % X 射线衍射和扫描电镜观察证明 ,膜中沸石晶体的取向是随机的 晶体尺寸约为 15~ 2 5 μm ,单层晶体厚的膜约为 10~ 2 0 μm 在焙烧除去有机模板剂后的沸石膜上 ,O2 和N2 的透过性分别为 0 .0 95× 10 -8和0 .15× 10 -8mol/ (m2 ·s·Pa) 计算的O2 /N2 的理想选择性 (0 .6 3)明显低于诺森扩散的理想选择性值 (0 .94)和透过原载体的理想选择性值 (0 .91)  相似文献   

11.
低温烧结3Y-TZP陶瓷的力学性能和耐磨性能   总被引:6,自引:2,他引:4  
研究了低温烧结 3Y_TZP的烧结性能、力学性能以及耐磨性能 .经成型后的ZrO2(x(Y2 O3 ) =3% )在常压、12 5 0~ 145 0℃温度下 2h烧成 .由于该粉料有很高的烧结活性 ,在 130 0℃低温烧成下就获得了相对密度大于 99%的烧结体 ;在 140 0℃烧成温度下3Y_TZP获得最佳的力学性能和耐磨性能 ,其抗弯强度、断裂韧性和维氏硬度分别达到95 3MPa ,9.1MPa·m1/2 和 12 .7GPa .应力诱导相变是主要的增韧机理 .  相似文献   

12.
研究了B2O3对陶瓷的烧结性能及微波介电特性的影响.结果表明B2O3的掺人能使Ca[(Li1/3Nb2/3)0.95Zr0.15]3 δ(CLNZ)陶瓷体系的烧结温度降低160~210℃,谐振频率温度系数τf随B2O3掺入量增加,但烧结温度对其没有明显影响.在990℃.掺入质量分数为1.0 %的B2O3,陶瓷微波介电性能最佳:εr=33.1,Qf=13 700 GHz,τf=-6.8×10-6/℃;而且,掺入2.0%的B2O3,在940℃烧结4 h,能获得介电性能良好的陶瓷,其εr=31.4,Qf=8 700 GHz,τf=-5.2×10-6/℃.  相似文献   

13.
醇燃烧反应机理探讨   总被引:5,自引:1,他引:5  
利用公式ΔH =- 0 .1196n/λ计算了甲醇和乙醇燃烧反应的理论火焰温度 ,提出了醇燃烧反应的机理 .该机理为 :(1)O2 +ν→ 2O· ;(2 )CmH2m + 1OH→CmH2m +H2 O ;(3)CmH2m →mC +mH2 ;(4 )H2 +O·→H2 O +hν ;(5 )C +O·→CO +hν;(6 ) 2CO +O2 → 2CO2 .  相似文献   

14.
以高纯Al2O3和Y2O3粉体为原料,在浆料pH值为9.7,分散剂PAA-NHt体积分数为1.5%,固相体积分数为50%,球磨时间12h,增塑剂PEG体积分数为1.5%的优化工艺条件下制备出流动性好、分散均匀的Y2O3-Al2O3混合浆料,利用注浆成型制备YAG陶瓷球形生坯,在60℃干燥24h条件下,球坯相对密度可达50%以上,球坯圆度偏差仅0.5346%,陶瓷球坯颗粒分布均匀.以体积分数0.8%的SiO2为烧结助剂,在1650℃保温6h,采用液相法烧结获得了自磨损率仅5.68×10^-6/h的YAG新型陶瓷磨球,可用于高性能YAG陶瓷的制备.  相似文献   

15.
高能球磨法制备Mg_4Nb_2O_9微波介质陶瓷及其表征   总被引:1,自引:0,他引:1  
采用高能球磨法制备粉体.粉体球磨60 h后在900℃保温3 h预烧合成Mg4Nb2O9纯相,研究了由高能球磨所得粉体制备的Mg4Nb2O9陶瓷的相结构、显微组织和微波介电性能随烧结温度的变化关系.X射线衍射检测Mg4Nb2O9陶瓷在1 150~1 200℃烧结过程中有微量的MgNb2O6和Mg5Nb4O15杂相产生,烧结温度高于1 200℃时,样品为Mg4Nb20g纯相;样品收缩率和密度随烧结温度的增大而增加,在1 200℃趋于饱和,分别为13.6和4.22 g/cm3(相对密度96.42%);样品的气孔含量随烧结温度增大降低,晶粒尺寸随烧结温度增大而增大,介电常数和品质因数随烧结温度的增大而增加;1 200℃烧结的样品具有高的致密度、清晰的显微组织,平均晶粒尺寸为3.5 μm,微波介电性能εr=12.6,Q·f=133164 GHz,τ=-56.69×10-6/℃.实验结果表明.高能球磨有效促进球磨后粉体在900℃低温合成Mg4Nb2O9纯相;并降低Mg4Nb2O9陶瓷的烧结温度到1 200℃,改善了陶瓷的谐振频率温度系数,有望成为新一代中温烧结微波介质材料.  相似文献   

16.
采用凝胶浇注法(gelcasting)合成了中温固体氧化物燃料电池阴极材料Ba0.5Sr0.5Co0.2Fe0.8O3-δ粉体。对BSCF粉末和烧结体的性能进行了测试分析。结果表明,制备的试样为单一钙钛矿相,其颗粒尺寸均匀,BSCF阴极材料的电导率随测试温度的升高而降低,其中Ba0.5Sr0.5Co0.2Fe0.8O3-δ在500℃电导率为25.4S/cm。Ba0.5Sr0.5Co0.2Fe0.8O3-δ与SDC的界面阻抗在800℃为0.20Ωm2。  相似文献   

17.
采用碳酸盐共沉淀法在氢气气氛下无压烧结制备Y2-x Lax O3(x =0 ~0.4)透明陶瓷,实验结果表明:在1 570 ℃氢气气氛下烧结5h,随着La2 O3含量的增加,烧结试样的相对密度及硬度均先上升后下降,其最大值分别达到了99.2%和809 HV,获得了透明陶瓷,其平均粒径仅为5~10 μm.  相似文献   

18.
以 CH3 COONa和 Na2 S2 O3 为主体 ,加入聚乙二醇和三官能聚醚 ,制得两种高分子固体电解质 ,其室温电导率分别达到 1 .8× 1 0 - 3 s/cm和 0 .8× 1 0 - 3 s/c  相似文献   

19.
钒酸钇原料制备   总被引:1,自引:0,他引:1  
采用液相反应法合成钒酸钇原料 .为了寻求最佳合成点 ,测定了氧化钇 (Y2 O3)和偏钒酸铵 (NH4 VO3)在硝酸和氨水中的溶解度 -浓度曲线 ;分析了温度对溶解度的影响 .钒酸钇粉末在 10 0℃的条件下烘干 ,5 0 0℃条件下烧结4 8h.XRD粉末衍射表明 ,所得物质为四方相钒酸钇  相似文献   

20.
S2O82-/ZrO2-Cr2O3固体超强酸催化合成乙酸苄酯   总被引:1,自引:0,他引:1  
以ZrOCl2 ·8H2 O ,CrCl3·6H2 O和 (NH4 ) 2 S2 O8为主要原料制备了新型固体超强酸催化剂S2 O82 -/ZrO2 -Cr2 O3,用于催化合成乙酸苄酯 .考察了乙酸 /苯甲醇摩尔比、催化剂用量、反应时间、带水剂种类和用量对酯产率的影响 .在典型反应条件下 (0 .5g催化剂 ,0 .18mol苯甲醇 ,0 .36mol乙酸 ,10 .0mL苯 ,回流反应 2 .0h)产率可达 80 .1% .该催化剂易于回收 ,且可重复使用 ,具有良好的活性稳定性 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号