首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M(2)L(4) molecular capsules self-assembled from M(II) ions (where M = Zn, Ni, and Pd) and bent bidentate ligands constructed from anthracene fluorophores. The Ni(II) and Zn(II) capsules exhibited weak to strong blue emission unlike traditional Pd(II) cages and capsules.  相似文献   

2.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

3.
The syntheses, structures, and magnetic properties of a series of tetranuclear cyanide-bridged compounds are reported. This family of molecular squares, [{M(II)Cl2}2{Co(II)(triphos)(CN)2}2] (M = Mn ([CoMn]), Fe ([CoFe]), Co ([CoCo]), Ni ([CoNi]), and Zn ([CoZn]), triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane), has been synthesized by the reaction of Co(II)(triphos)(CN)2 and MCl2 (M = Mn, Co, Ni, Zn) or Fe4Cl8(THF)6 in a CH2Cl2/EtOH mixture. These complexes are isostructural and consist of two pentacoordinate Co(II) and two tetrahedral M(II) centers. The resulting molecular squares are characterized by antiferromagnetic coupling between metal centers that generally follows the spin-coupling model S total = SM(II)1 - SCo1 + SM(II)2 - SCo2. Magnetic parameters for all the complexes were measured using SQUID magnetometry. Additionally, [CoZn] and [CoMn] were studied by both conventional and high-frequency and high-field electron paramagnetic resonance.  相似文献   

4.
A series of five-coordinate thiolate-ligated complexes [M(II)(tren)N4S(Me2)]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren = tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation of dimeric [Ni(II)(SN4(tren)-RS(dang))]2 ("dang"= dangling, uncoordinated thiolate supported by H bonds), using the less bulky [(tren)N4S](1-) ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [Ni(II)(S(Me2)N4(tren)]+, are isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints. The nickel complex uniquely adopts an approximately ideal square pyramidal geometry and resembles the active site of Ni-superoxide dismutase (Ni-SOD). Even in coordinating solvents such as MeCN, only five-coordinate structures are observed. The MII-S thiolate bonds systematically decrease in length across the series (Mn-S > Fe-S > Co-S > Ni-S approximately Cu-S < Zn-S) with exceptions occurring upon the occupation of sigma* orbitals. The copper complex, [Cu(II)(S(Me2)N4(tren)]+, represents a rare example of a stable CuII-thiolate, and models the perturbed "green" copper site of nitrite reductase. In contrast to the intensely colored, low-spin Fe(III)-thiolates, the M(II)-thiolates described herein are colorless to moderately colored and high-spin (in cases where more than one spin-state is possible), reflecting the poorer energy match between the metal d- and sulfur orbitals upon reduction of the metal ion. As the d-orbitals drop in energy proceeding across the across the series M(2+) (M= Mn, Fe, Co, Ni, Cu), the sulfur-to-metal charge-transfer transition moves into the visible region, and the redox potentials cathodically shift. The reduced M(+1) oxidation state is only accessible with copper, and the more oxidized M(+4) oxidation state is only accessible for manganese.  相似文献   

5.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

6.
Mononuclear Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), Pt(IV), Au(III), and Pd(II) complexes of the drug amlodipine besylate (HL) have been synthesized and characterized by elemental analysis, spectroscopic technique (IR, UV–Vis, solid reflectance, scanning electron microscopy, X-ray powder diffraction, and 1H-NMR) and magnetic measurements. The elemental analyses of the complexes are confirmed by the stoichiometry of the types [M(HL)(X)2(H2O)]·nH2O [M = Mn(II), Co(II), Zn(II), Ni(II), Mg(II), Sr(II), Ba(II), and Ca(II); X = Cl? or NO3 ?], [Cd(HL)(H2O)]Cl2, [Pd(HL)2]Cl2, [Pt(L)2]Cl2, and [Au(L)2]Cl, respectively. Infrared data revealed that the amlodipine besylate drug ligand chelated as monobasic tridentate through NH2, oxygen (ether), and OH of besylate groups in Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), and Au(III) complexes, but in Pt(IV) and Pd(II) complexes, the amlodipine besylate coordinates via NH2 and OH (besylate) groups. An octahedral geometry is proposed for all complexes except for the Cd(II), Pt(IV), and Pd(II) complexes. The amlodipine besylate free ligand and the transition and non-transition complexes showed antibacterial activity towards some Gram-positive and Gram-negative bacteria and the fungi (Aspergillus flavus and Candida albicans).  相似文献   

7.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) 3-methyladipates were investigated and their qualitative composition and magnetic moments were determined. The IR spectra and powder diffraction patterns of the complexes prepared of the general formula M(C7H10O4nH2O (n=0-11) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Co, Ni) or two steps (Mn, Zn) losing all crystallization water molecules (Co, Ni) or some water molecules (Mn, Zn) and then anhydrous (Co, Ni, Cu) or hydrated complexes (Mn, Zn) decompose directly to oxides (Mn, Co, Zn) or with intermediate formation the mixture of M+MO (Ni, Cu). The carboxylate groups are bidentate (Mn, Co, Ni, Cu) or monodentate (Zn). The complexes exist as polymers. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.48, 4.49, 2.84 and 1.45 B.M., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In this study, a new aqueous insoluble ionic β-cyclodextrin polymer (PYR), synthesized by reaction of β-cyclodextrin with pyromellitic anhydride [1], is characterized by IR spectroscopy, showing typical cyclodextrin and carboxylic absorptions. pH-metric titrations of the acidic functions with standard NaOH solutions followed by a refinement of protonation constants, with specific software for equilibrium in solution, have been performed. Through this approach, the pK a values of the functional groups have been calculated. The complexation capabilities of PYR towards metal ions [Al(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV), Tl(I), and U(IV)] have been evaluated in aqueous solution (pH 3–5). The retention is mainly pH dependent and higher than 70% for Al(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II) and U(IV). For Tl(I) and Pt(IV) the retention is about 60% and 40% respectively.  相似文献   

9.
The thermal-induced changes in molecular magnets based on Prussian blue analogues, M(3)[Fe(CN)(6)](2).xH(2)O (M = Mn, Co, Ni, Cu, Zn, and Cd), were studied from infrared, X-ray diffraction, thermo-gravimetric, M?ssbauer, and magnetic data. Upon being heated, these materials loose the crystalline water that enhances the interaction between the metal centers, as has been detected from M?ssbauer spectroscopy data. At higher temperatures, a progressive decomposition process takes place, liberating CN(-) groups, which reduces the iron atom from Fe(III) to Fe(II) to form hexacyanoferrates(II). The exception corresponds to the cobalt compound that undergoes an inner charge transfer to form Co(III) hexacyanoferrate(II). In the case of zinc ferricyanide, the thermal decomposition is preceded by a structural transformation, from cubic to hexagonal. For M = Co, Ni, Cu, and Zn the intermediate reaction product corresponds to a solid solution of M(II) ferricyanide and ferrocyanide. For M = Mn and Cd the formation of a solid solution on heating was not detected. The crystal frameworks of the initial M(II) ferricyanide and of the formed M(II) ferrocyanide are quite different. In annealed Mn(II) ferricyanide samples, an increasing anti-ferromagnetic contribution on heating, which dominates on the initial ferrimagnetic order, was observed. Such a contribution was attributed to neighboring Mn(II) ions linked by aquo bridges. In the anhydrous annealed sample such interaction disappears. This effect was also studied in pure Mn(II) ferrocyanide. The occurrence of linkage isomerism and also the formation of Ni(III), Cu(III), and Zn(III) hexacyanoferrates(II) were discarded from the obtained experimental evidence.  相似文献   

10.
Research on Chemical Intermediates - The ketoamine, 2-(1,3-benzothiazol-2-ylamino)naphthalene-1,4-dione(HL) and its Mn(II), Co(II), Ni(II), Cu(II), Pd(II) and Zn(II) complexes were synthesized and...  相似文献   

11.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

12.
Novel complexes of Co(II), Ni(II), Cu(II) and Pd(II) with the new ligand [N,N'-bis(2-carboxy-1-oxo-phenelenyl)ethylenediamine] (H2L) have been synthesized and characterized on the basis of elemental analyses, magnetic susceptibility, thermal, infrared, electronic, 1H NMR and EPR spectral studies. Infrared and 1H NMR spectra show that H2L acts as a binegative tetradentate ligand. Coordination occurs through deprotonated carboxylate oxygens and nondeprotonated amido nitrogens in all the complexes. Electronic spectral studies and magnetic moment values suggest N2O2 coordination around each metal centre with strong field square planar chromophores. The probable structures of the complexes have been assigned on the basis of spectral studies. The complex formation between M(II) [M(II) = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)] and (L2-) has also been studied potentiometrically in 75% aqueous DMF at 25 degrees C in 0.1 M NaClO4. The stability constants were found to follow the order: Mn(II) < Co(II) < Ni(II) < Cu(II) > Zn(II).  相似文献   

13.
含氮配位原子的希夫碱型化合物在分析化学、合成化学、药学等方面有广泛的应用。近十多年来,随着新药物的研制和生物无机化学的发展,其研究正在不断深入。肟类化合物在结构上与希夫碱型化合物主要不同之处是在于它与氮原子相连的基团是羟基,它在适当的条件下可参与金属配位或形成氢键,研究其配位模式有较重要的理论意义。我们合成了一个新的含醚氧链的双肟化合物,2,2'—双[2—(邻甲酰肟苯氧基)乙基]醚(H_2BFO)。本  相似文献   

14.
Summary The catalytic effects of peroxidase-like metalloporphyrins (Me-P) on the fluorescence reaction of homovanillic acid with hydrogen peroxide have been studied. These metalloporphyrins are the complexes of Mn with tetrakis(carboxyphenyl)porphyrin (TPPC) and trikis(sulfophenyl)porphyrin(TPPS3), Fe, Co, Ni, Cu, Zn, Ag and Sn with tetrakis(sulfophenyl)porphyrin(TPPS4), and Rh, Pt and Pd with tetrakis(N-methylpyridiniumyl)porphyrin-(TMPyP) and hemin. The complexes of Mn, Fe, Co, Rh and Pt with porphyrins catalyzed the formation of the fluorescence product, while the complexes of Ni, Cu, Zn, Ag, Sn and Pd did not. Traces of hydrogen peroxide and glucose can be determined using the metalloporphyrins. The characteristics of peroxidase-like metalloporphyrins have been compared with those of horseradish peroxidase (HRP).  相似文献   

15.
The influence exerted by the degree of substitution of sulfoethylated chitosan cross-linked with glutaraldehyde on the sorption of Pd(II) chloride complexes from multicomponent solutions containing Pt(IV), Cu(II), Ni(II), Co(II), Cd(II), and Zn(II) was studied. The sorption of transition metal ions under the conditions of the experiment at pH 0.5–5.0 is virtually fully suppressed. The strongest interfering effect on the Pd(II) sorption is exerted by Pt(IV). Calculation of the selectivity coefficients KPd/Pt shows that the selectivity of the Pd(II) sorption relative to Pt(IV) increases with an increase in the degree of substitution of chitosan from 0.3 to 0.5. Integral kinetic curves of the Pd(II) sorption were obtained, and the dependences were subjected to mathematical processing using the models of diffusion and chemical kinetics. The equilibrium in the palladium(II) chloride solution–sorbent system is attained within 40 min. Pd and Pt are quantitatively desorbed from the sorbent surface under dynamic conditions with 3.5 M HCl solution.  相似文献   

16.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The effect of M(II) substitution on the magnitude of the negative thermal expansion (NTE) behavior within a series of Prussian Blue analogues, M(II)Pt(IV)(CN)(6) for M(II) = Mn, Fe, Co, Ni, Cu, Zn, Cd, has been investigated using variable-temperature powder X-ray diffraction (100-400 K). The NTE behavior varies widely with M(II) substitution, from near zero thermal expansion in NiPt(CN)(6) (alpha = dl/l dT = -1.02(11) x 10(-)(6) K(-)(1)) up to a maximum in CdPt(CN)(6) (alpha = -10.02(11) x 10(-)(6) K(-)(1)). The trend in the magnitude of the NTE behavior, with increasing atomic number (Z) of the M(II) ion, follows the order Mn(II) > Fe(II) > Co(II) > Ni(II) < Cu(II) < Zn(II) < Cd(II), which correlates with the trends for M(II) cation size, the lattice parameter, and structural flexibility as indicated by the temperature-dependent structural refinements and Raman spectroscopy. Analysis of the temperature dependence of the average structures suggests that the differences in the thermal expansion are due principally to the different strengths of the metal-cyanide binding interaction and, accordingly, the different energies of transverse vibration of the cyanide bridge, with enhanced NTE behavior for more flexible lattices.  相似文献   

18.
Bis(3-cyano-pentane-2,4-dionato) (CNacac) metal complex, [M(CNacac)(2)], which acts as both a metal-ion-like and a ligand-like building unit, forms supramolecular structures by self-assembly. Co-grinding of the metal acetates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with CNacacH formed a CNacac complex in all cases: mononuclear complex was formed in the cases of Mn(II), Cu(II) and Zn(II), whereas polymeric ones were formed in the cases of Fe(II), Co(II) and Ni(II). Subsequent annealing converted the mononuclear complexes of Mn(II), Cu(II) and Zn(II) to their corresponding polymers as a result of dehydration of the mononuclear complexes. The resultant Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) polymeric complexes had a common 3 D structure with high thermal stability. In the case of Cu(II), a 1 D polymer was obtained. The Mn(II), Cu(II) and Zn(II) polymeric complexes returned to their original mononuclear complexes on exposure to water vapour but they reverted to the polymeric complexes by re-annealing. Co-grinding of metal chlorides with CNacacH and annealing of the mononuclear CNacac complexes prepared from solution reactions were also examined for comparison. [Mn(CNacac)(2)(H(2)O)(2)], [M(CNacac)(2)(H(2)O)] (M=Cu(II) and Zn(II)) and [M(CNacac)(2)](infinity) (M=Mn(II), Fe(II) and Zn(II)) are new compounds, which clearly indicated the power of the combined mechanochemical/annealing method for the synthesis of varied metal coordination complexes.  相似文献   

19.
取代型杂多化合物可改变多酸化合物的酸碱性、氧化还原性和热稳定性,因而受到关注[1]. 夹心型化合物是一类新型化合物,具有大的摩尔质量,高的负电荷,且含有多个磁性中心,近年来已引起国内外的兴趣[2].  相似文献   

20.
We report the synthesis, crystal structures, thermal and magnetic characterizations of a family of metal‐organic frameworks adopting the niccolite (NiAs) structure, [dmenH22+][M2(HCOO)62−] (dmen=N,N′‐dimethylethylenediamine; M=divalent Mn, 1Mn ; Fe, 2Fe ; Co, 3Co ; Ni, 4Ni ; Cu, 5Cu ; and Zn, 6Zn ). The compounds could be synthesized by either a diffusion method or directly mixing reactants in methanol or methanol–water mixed solvents. The five members, 1Mn , 2Fe , 3Co , 4Ni , and 6Zn are isostructural and crystallize in the trigonal space group P 1c, while 5Cu crystallizes in C2/c. In the structures, the octahedrally coordinated metal ions are connected by anti–anti formate bridges, thus forming the anionic NiAs‐type frameworks of [M2(HCOO)62−], with dmenH22+ located in the cavities of the frameworks. Owing to the Jahn–Teller effect of the Cu2+ ion, the 3D framework of 5Cu consists of zigzag Cu‐formate chains with Cu OCHO Cu connections through short basal Cu O bonds, further linked by the long axial Cu O bonds. 6Zn exhibits a phase transition probably as a result of the order–disorder transition of the dmenH22+ cation around 300 K, confirmed by differential scanning calorimetry and single crystal X‐ray diffraction patterns under different temperatures. Magnetic investigation reveals that the four magnetic members, 1Mn , 2Fe , 3Co , and 4Ni , display spin‐canted antiferromagnetism, with a Néel temperature of 8.6 K, 19.8 K, 16.4 K, and 33.7 K, respectively. The Mn, Fe, and Ni members show spin‐flop transitions below 50 kOe. 2Fe possesses a large hysteresis loop with a large coercive field of 10.8 kOe. The Cu member, 5Cu , shows overall antiferromagnetism (both inter‐ and intra‐chains) with low‐dimensional characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号