首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pgip-1 gene of Phaseolus vulgaris, encoding a polygalacturonase-inhibiting protein (PGIP), PGIP-1 (P. Toubart, A. Desiderio, G. Salvi, F. Cervone, L. Daroda, G. De Lorenzo, C. Bergmann, A. G. Darvill, and P. Albersheim, Plant J. 2:367-373, 1992), was expressed under control of the cauliflower mosaic virus 35S promoter in tomato plants via Agrobacterium tumefaciens-mediated transformation. Transgenic tomato plants with different expression levels of PGIP-1 were used in infection experiments with the pathogenic fungi Fusarium oxysporum f. sp. lycopersici, Botrytis cinerea, and Alternaria solani. No evident enhanced resistance, compared with the resistance of untransformed plants, was observed. The pgip-1 gene was also transiently expressed in Nicotiana benthamiana with potato virus X (PVX) as a vector. PGIP-1 purified from transgenic tomatoes and PGIP-1 in crude protein extracts of PVX-infected N. benthamiana plants were tested with several fungal polygalacturonases (PGs). PGIP-1 from both plant sources exhibited a specificity different from that of PGIP purified from P. vulgaris (bulk bean PGIP). Notably, PGIP-1 was unable to interact with a homogeneous PG from Fusarium moniliforme, as determined by surface plasmon resonance analysis, while the bulk bean PGIP interacted with and inhibited this enzyme. Moreover, PGIP-1 expressed in tomato and N. benthamiana had only a limited capacity to inhibit crude PG preparations from F. oxysporum f. sp. lycopersici, B. cinerea, and A. solani. Differential affinity chromatography was used to separate PGIP proteins present in P. vulgaris extracts. A PGIP-A with specificity similar to that of PGIP-1 was separated from a PGIP-B able to interact with both Aspergillus niger and F. moniliforme PGs. Our data show that PGIPs with different specificities are expressed in P. vulgaris and that the high-level expression of one member (pgip-1) of the PGIP gene family in transgenic plants is not sufficient to confer general, enhanced resistance to fungi.  相似文献   

2.
Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library of the date palm pathogen. Regions flanking the insertion sites were sequenced, and these sequences were used to design PCR primers that amplify the DNA regions at several Fot 1 insertion sites. When tested on a large sample of Fusarium isolates, including 286 F. oxysporum f. sp. albedinis isolates, 17 other special forms, nonpathogenic F. oxysporum isolates from palm grove soils, and 8 other Fusarium species, the primer pair TL3-FOA28 allowed amplification of a 400-bp fragment found only in F. oxysporum f. sp. albedinis. Sequence analysis showed that one of the Fot 1 copies was truncated, lacking 182 bp at its 3' terminus. The primer pair BI03-FOA1 amplified a 204-bp fragment which overlapped the Fot 1 truncated copy and its 3' site of insertion in the F. oxysporum f. sp. albedinis genome and identified 95% of the isolates. The primer pairs BIO3-FOA1 and TL3-FOA28 used in PCR assays thus provide a useful diagnostic tool for F. oxysporum f. sp. albedinis isolates.  相似文献   

3.
The antifungal glycoalkaloid alpha-tomatine of the tomato plant (Lycopersicon esculentum) is proposed to protect the plant against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a vascular pathogen of tomato, produces a tomatinase enzyme which hydrolyses the glycoalkaloid into non-fungitoxic compounds. Detoxification of alpha-tomatine may be how this fungus avoids the plant glycoalkaloid barrier. As an initial step to evaluate this possibility we have studied the induction of tomatinase; (i) in fungal cultures containing extracts from leaf, stem or root of tomato plants; and (ii) in stem and root of tomato plants infected with the pathogen at different infection stages. The kinetics of tomatinase induction with leaf extract (0.6% dry weight) was similar to that observed with 20 micrograms ml-1 of alpha-tomatine. In the presence of stem extract, tomatinase activity was less than 50% of that induced with leaf extract, whereas in the presence of root extract tomatinase activity was very low. In the stem of infected tomato plants tomatinase activity was higher at the wilt stage than in previous infections stages and in root, tomatinase activity appeared with the first symptoms and was maintained until wilting. TLC analysis showed that the tomatinase induced in culture medium with plant extracts and in infected tomato plants had the same mode of action as the enzyme induced with pure alpha-tomatine, hydrolysing the glycoalkaloid into its non-fungitoxic forms, tomatidine and beta-lycotetraose. The antisera raised against purified tomatinase recognized in extracts of root and stem of infected tomato plants a protein of 50000 (45000 when proteins were deglycosylated), corresponding to the tomatinase enzyme. Therefore, it is concluded that F. oxysporum f. sp. lycopersici express tomatinase in vivo as a result of the infection of tomato plant.  相似文献   

4.
Panama disease of banana, caused by the fungus Fusarium oxysporum f. sp. cubense, is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Previous work has indicated that F. oxysporum f. sp. cubense consists of several clonal lineages that may be genetically distant. In this study we tested whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes. DNA sequences were obtained for translation elongation factor 1alpha and the mitochondrial small subunit ribosomal RNA genes for F. oxysporum strains from banana, pathogenic strains from other hosts and putatively nonpathogenic isolates of F. oxysporum. Cladograms for the two genes were highly concordant and a partition-homogeneity test indicated the two datasets could be combined. The tree inferred from the combined dataset resolved five lineages corresponding to "F. oxysporum f. sp. cubense" with a large dichotomy between two taxa represented by strains most commonly isolated from bananas with Panama disease. The results also demonstrate that the latter two taxa have significantly different chromosome numbers. F. oxysporum isolates collected as nonpathogenic or pathogenic to other hosts that have very similar or identical elongation factor 1alpha and mitochondrial small subunit genotypes as banana pathogens were shown to cause little or no disease on banana. Taken together, these results indicate Panama disease of banana is caused by fungi with independent evolutionary origins.  相似文献   

5.
Hydroxylation of dehydroabietic acid by Fusarium species   总被引:2,自引:0,他引:2  
A novel compound, 1 beta-hydroxydehydroabietic acid has been obtained by the microbial transformation of dehydroabietic acid, using cultures of Fusarium oxysporum and F. moniliforme. Its antibacterial activity was also tested.  相似文献   

6.
Nineteen identified species which belong to nine fungal genera were recovered from 14 samples collected from different sites of the Red Sea governorate. The aquatic fungal genera were Allomyces, Dictyuchus, Saprolegnia and Pythium while, the terrestrial fungal genera were Aspergillus, Penicillium, Fusarium, Neurospora and Rhizopus. Aspergillus was the most frequent genus, represented by seven species, of which A. niger, A. flavus and A. ustus were the most common. Penicillium was of occurred less frequently and was represented by two species, while Fusarium was isolated unfrequently and contributed four species. The remaining genera were unfrequent or rare and were each represented by one species. In addition, two electrophoretic isozyme patterns, esterase and glutamate oxalate transaminase (GOT), were determined to measure variability among 10 isolates of Fusarium. The results revealed that the tested fungi differed from each other in one or more esterase bands, except that F. moniliforme isolated from Safaga and from 40 Kilometers south of El-Kaussier yielded similar banding pattern. The activity of GOT was observed in the samples of F. solani and F. oxysporum and not detected in other isolates of Fusarium. The results indicated that F. solani differed from F. oxysporum in the isozymes of GOT, while no differences were observed between the isolated of the same species.  相似文献   

7.
Beauvericin is a cyclohexadepsipeptide mycotoxin which has insecticidal properties and which can induce apoptosis in mammalian cells. Beauvericin is produced by some entomo- and phytopathogenic Fusarium species (Fusarium proliferatum, F. semitectum, and F. subglutinans) and occurs naturally on corn and corn-based foods and feeds infected by Fusarium spp. We tested 94 Fusarium isolates belonging to 25 taxa, 21 in 6 of the 12 sections of the Fusarium genus and 4 that have been described recently, for the ability to produce beauvericin. Beauvericin was produced by the following species (with the number of toxigenic strains compared with the number of tested strains given in parentheses): Fusarium acuminatum var. acuminatum (1 of 4), Fusarium acuminatum var. armeniacum (1 of 3), F. anthophilum (1 of 2), F. avenaceum (1 of 6), F. beomiforme (1 of 1), F. dlamini (2 of 2), F. equiseti (2 of 3), F. longipes (1 of 2), F. nygamai (2 of 2), F. oxysporum (4 of 7), F. poae (4 of 4), F. sambucinum (12 of 14), and F. subglutinans (3 of 3). These results indicate that beauvericin is produced by many species in the genus Fusarium and that it may be a contaminant of cereals other than maize.  相似文献   

8.
We describe a novel fungal expression system which utilizes the Quorn myco-protein fungus Fusarium graminearum A 3/5. A transformation system was developed for F. graminearum and was used to introduce the coding and regulatory regions of a trypsin gene from Fusarium oxysporum. The protein was efficiently expressed, processed and secreted by the recombinant host strain. In addition, the promoter and terminator of the F. oxysporum trypsin gene have been successfully utilized to drive the expression of a cellulase gene from Scytalidium thermophilum and a lipase gene from Thermomyces lanuginosus in F. graminearum.  相似文献   

9.
Biodegradation of chlorpyrifos was studied in liquid culture media amended with either single or combined eight different plant pathogenic fungi isolated from the continuous cropping wheat fields. The average recovery of chlorpyrifos from the liquid media was found to be 86.1%. The detection limit of chlorpyrifos by the analytical method used was 19 ppb. Data showed that the growth of mixed fungi at concentrations up to 200 ppm of chlorpyrifos was higher than in the control treatment. Chlorpyrifos concentrations declined in the medium of combined fungi more than it did in the medium of any single fungus with increase in the incubation period. The amount of chlorpyrifos recovered was 79.8 ppm (39.9%) in the combined fungal cultures after 21 days. However, those recovered from the media of Fusarium graminearum, F. oxysporum, Rhizoctonia solani, Cladosporium cladosporiodes, Cephalosporium sp., Trichoderma viridi, Alternaria alternata, and Cladorrhinum brunnescens, ranged from 48.0 to 74.8%. The half-life value (T1/2) for chlorpyrifos was 15.8 day in the medium amended with mixed fungi. However, for the single cultures it ranged from 19.3 to 33.0 day.  相似文献   

10.
The filamentous fungus Cochliobolus carbonum produces endo-alpha 1,4-polygalacturonase (endoPG), exo-alpha 1,4-polygalacturonase (exoPG), and pectin methylesterase when grown in culture on pectin. Residual activity in a pgn1 mutant (lacking endoPG) was due to exoPG activity, and the responsible protein has now been purified. After chemical deglycosylation, the molecular mass of the purified protein decreased from greater than 60 to 45 kDa. The gene that encodes exoPG, PGX1, was isolated with PCR primers based on peptide sequences from the protein. The product of PGX1, Pgx1p, has a predicted molecular mass of 48 kDa, 12 potential N-glycosylation sites, and 61% amino acid identity to an exoPG from the saprophytic fungus Aspergillus tubingensis. Strains of C. carbonum mutated in PGX1 were constructed by targeted gene disruption and by gene replacement. Growth of pgx1 mutant strains on pectin was reduced by ca. 20%, and they were still pathogenic on maize. A double pgn1/pgx1 mutant strain was constructed by crossing. The double mutant grew as well as the pgx1 single mutant on pectin and was still pathogenic despite having less than 1% of total wild-type PG activity. Double mutants retained a small amount of PG activity with the same cation-exchange retention time as Pgn1p and also pectin methylesterase and a PG activity associated with the mycelium. Continued growth of the pgn1/pgx1 mutant on pectin could be due to one or more of these residual activities.  相似文献   

11.
We report a case of disseminated fusariosis in a 42-year-old patient with adult respiratory distress syndrome (ARDS) and extracorporal membrane oxygenation (ECMO), but without definite immunosuppression. Fusarium oxysporum was isolated from a bronchial lavage taken 6 days ante mortem. Despite antifungal treatment with amphotericin B and flucytosine the patient died in septic multiorgan failure. A post-mortem examination was performed. The patient's liver was found to contain fungus cells and F. oxysporum could be cultured from ascites.  相似文献   

12.
13.
Pathogenicity test of Fusarium oxysporum on ten cultivars of soybean revealed Soymax and Punjab-1 to be most resistant while JS-2 and UPSM-19 were most susceptible. Antigens were prepared from the roots of all the ten varieties of soybean and the mycelium of F. oxysporum. Polyclonal antisera were raised against the mycelial suspension of F. oxysporum and the root antigen of the susceptible cultivar UPSM-19. Cross reactive antigens shared by the host and the pathogen were detected first by immunodiffusion. The immunoglobulin fraction of the antiserum was purified by ammonium sulfate precipitation and DEAE-Sephadex column chromatography. The immunoglobulin fractions were used for detection of cross-reactive antigens by enzyme-linked immunosorbent assay. In enzyme-linked immunosorbent assay, antigens of susceptible cultivars showed higher absorbance values when tested against the purified anti-F. oxysporum antiserum. Antiserum produced against UPSM-19 showed cross-reactivity with the antigens of other cultivars. Indirect staining of antibodies using fluorescein isothiocyanate indicated that in cross-sections of roots of susceptible cultivar (UPSM-19) cross-reactive antigens were concentrated around xylem elements, endodermis and epidermal cells, while in the resistant variety, fluorescence was concentrated mainly around epidermal cells and distributed in the cortical tissues. CRAs were also present in microconidia, macroconidia and chlamydospores of the fungus.  相似文献   

14.
15.
A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed.  相似文献   

16.
17.
A complex seven species model community, including bacteria and fungi, was selected from organisms isolated from the walls of an industrial flowing water system. Growth rates of the species were determined in single and mixed batch culture growth. The rates were found to be significantly higher in mixed culture for Pseudomonas alcaligenes and Flavobacterium indologenes and higher in single culture for Xanthomonas maltophilia, Rhodotorula glutinis and Fusarium solani, whereas no significant difference was recorded for Alcaligenes denitrificans and Fusarium oxysporum. All species attached to PVC in single and mixed culture to form biofilms. Xanthomonas maltophilia, Alc. denitrificans, Ps. alcaligenes and F. solani biofilm cell densities cm-2 were significantly higher than attachment of the component species in mixed culture. Statistical analyses showed a significant difference in rate of colonization between single and mixed cultures for some species. No significant difference was noted between mixed culture cell densities cm-2 at laminar flows of Reynolds number 2.7 and 5.4.  相似文献   

18.
Selected nonpathogenic, root-colonizing bacteria are able to elicit induced systemic resistance (ISR) in plants. To elucidate the molecular mechanisms underlying this type of systemic resistance, an Arabidopsis-based model system was developed in which Pseudomonas syringae pv. tomato and Fusarium oxysporum f. sp. raphani were used as challenging pathogens. In Arabidopsis thaliana ecotypes Columbia and Landsberg erecta, colonization of the rhizosphere by P. fluorescens strain WCS417r induced systemic resistance against both pathogens. In contrast, ecotype RLD did not respond to WCS417r treatment, whereas all three ecotypes expressed systemic acquired resistance upon treatment with salicylic acid (SA). P. fluorescens strain WCS374r, previously shown to induce ISR in radish, did not elicit ISR in Arabidopsis. The opposite was found for P. putida strain WCS358r, which induced ISR in Arabidopsis but not in radish. These results demonstrate that rhizosphere pseudomonads are differentially active in eliciting ISR in related plant species. The outer membrane lipopolysaccharide (LPS) of WCS417r is the main ISR-inducing determinant in radish and carnation, and LPS-containing cell walls also elicit ISR in Arabidopsis. However, mutant WCS417rOA-, lacking the O-antigenic side chain of the LPS, induced levels of protection similar to those induced by wild-type WCS417r. This indicates that ISR-inducing bacteria produce more than a single factor that trigger ISR in Arabidopsis. Furthermore, WCS417r and WCS358r induced protection in both wild-type Arabidopsis and SA-nonaccumulating NahG plants without activating pathogenesis-related gene expression. This suggests that elicitation of an SA-independent signaling pathway is a characteristic feature of ISR-inducing biocontrol bacteria.  相似文献   

19.
An extracellular beta-glucosidase from Fusarium oxysporum was purified to homogeneity by gel-filtration and ion-exchange chromatographies. The enzyme, a monomeric protein of 110 kDa, was maximally active at pH 5.0-6.0 and at 60 degrees C. It hydrolysed 1-->4-linked aryl-beta-glucosides and 1-->4-linked, 1-->3-linked and 1-->6-linked beta-glucosides. The apparent Km and kcat values for p-nitrophenyl beta-D-glucopyranoside (4-NpGlcp) and cellobiose were 0.093 (Km), 1.07 mM (kcat) and 1802 (Km), 461.5 min-1 (kcat), respectively. Glucose and gluconolactone inhibited the enzyme competitively with Ki values of 2.05 mM and 3.03 microM, respectively. Alcohols activated the enzyme; butanol showed maximum effect (2.2-fold at 0.5 M) while methanol increased the activity by 1.4-fold at 1 M. The enzyme catalysed the synthesis of methylglucosides, ethylglucoside and propylglucosides, as well as trisaccharides in the presence of different alcohols and disaccharides, respectively. In addition, the enzyme hydrolysed the unsubstituted and methylumbelliferyl cello-oligosaccharides [MeUmb(Glc)n] but the rate of hydrolysis decreased with increasing chain length. Analysis of products released from MeUmb(Glc)n as a function of time revealed that the enzyme attacked these substrates in a stepwise manner and from both ends. Thus, beta-glucosidase from F. oxysporum, with the above interesting properties, could be of commercial interest.  相似文献   

20.
A mycovirus (named FusoV) from the phytopathogenic fungus, Fusarium solani f. sp. robiniae SUF704, has two kinds of double-stranded (ds) RNA genomes, designated M1 and M2. The cDNAs were constructed from FusoV genomic dsRNAs. The sequences of M1 and M2 cDNAs comprised 1645 and 1445bp, respectively. Sequence analysis showed that each dsRNA had a single long open reading frame (ORF) on only one of the strands. M1 ORF encodes a 519-amino acid residue polypeptide with a predicted molecular mass of 60 kDa. RNA-dependent RNA polymerase-conserved motifs were identified in the predicted amino acid sequence, and the polymerase synthesized dsRNA in vitro. The M2 ORF encodes a polypeptide of 413 amino acid residues with a predicted molecular mass of 44 kDa. The predicted amino acid sequence contained the sequence corresponding to those found in the purified 44-kDa capsid protein of FusoV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号