首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)‐, 2.3.2.1c (H5N1)‐ and 2.3.4.4 (H5N6)‐infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a “mixing vessel” for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian–human influenza virus reassortment if they are also co‐infected with human influenza viruses.  相似文献   

2.
In late 2016, two zoos, one in northern Japan and the other in central Japan, experienced highly pathogenic avian influenza (HPAI) outbreaks, in which multiple zoo birds were infected with H5N6 subtype HPAI virus (HPAIV). Here, we report an overview of these HPAI outbreaks. HPAIV infections were confirmed by virus isolation in three black swans (Cygnus atratus) and three snowy owls (Bubo scandiacus) kept in the Omoriyama Zoo hospital. At Higashiyama Zoo and Botanical Gardens, following the death of a black swan at a zoo pond, nine waterfowl, including two black swans, four cackling geese (Branta hutchinsii leucopareia), two mallards (Anas platyrhynchos), and a wigeon (Anas penelope), died after HPAIV infection in isolation facilities. Based on the presence of H5‐specific antibodies in their sera, two surviving black swans and a surviving mallard at Higashiyama Zoo appeared to have HPAIV infection, although the virus was not isolated. The detectable levels of antibodies (≥10 HI) were maintained for at least 5–9 months, as determined by haemagglutinin inhibition test. Isolation of two H5N6 subtype HPAIVs from an open‐air pond where affected zoo birds were previously housed at Higashiyama Zoo strongly indicates that wild waterfowl associated with aquatic environments brought the virus to the zoo. The phylogenetic relationships of the 18 isolates indicated direct viral transmission among birds within each zoo. In both zoos, containment of suspected birds in isolation facilities might have allowed the virus spread among birds inside the facility. However, maintaining containment measures and strict sanitation procedures could facilitate successful physical containment and clearance of HPAIV in both zoos.  相似文献   

3.
Since 2014, H5 highly pathogenic avian influenza viruses (HPAIVs) from clade 2.3.4.4 have been persistently circulating in Southern China. This has caused huge losses in the poultry industry. In this study, we analysed the genetic characteristics of seven H5N6 HPAIVs of clade 2.3.4.4 that infected birds in Southern China in 2016. Phylogenetic analysis grouped the HA, PB2, PA, M and NS genes as MIX‐like, and the NA genes grouped into the Eurasian lineage. The PB1 genes of the GS24, GS25, CK46 and GS74 strains belonged to the VN 2014‐like group and the others were grouped as MIX‐like. The NP genes of GS24 and GS25 strains belonged to the ZJ‐like group, but the others were MIX‐like. Thus, these viruses came from different genotypes, and the GS24, GS25, CK46 and GS74 strains displayed genotype recombination. Additionally, our results showed that the mean death time of all chickens inoculated with 105 EID50 of CK46 or GS74 viruses was 3 and 3.38 days, respectively. The viruses replicated at high titers in all tested tissues of the inoculated chickens. They also replicated in all tested tissues of naive contact chickens, but their replication titers in some tissues were significantly different (p < 0.05). Thus, the viruses displayed high pathogenicity and variable transmission in chickens. Therefore, it is necessary to focus on the pathogenic variation and molecular evolution of H5N6 HPAIVs in order to prevent and control avian influenza in China.  相似文献   

4.
Outbreaks of highly pathogenic avian influenza (HPAI ) have been reported worldwide. Wild waterfowl play a major role in the maintenance and transmission of HPAI . Highly pathogenic avian influenza subtype H5N6 and H5N8 viruses simultaneously emerged in South Korea. In this study, the comparative pathogenicity and infectivity of Clade 2.3.4.4 Group B H5N8 and Group C H5N6 viruses were evaluated in Mandarin duck (Aix galericulata ). None of the ducks infected with H5N6 or H5N8 viruses showed clinical signs or mortality. Serological assays revealed that the HA antigenicity of H5N8 and H5N6 viruses was similar to each other. Moreover, both the viruses did not replicate after cross‐challenging with H5N8 and H5N6 viruses, respectively, as the second infection. Although both the viruses replicated in most of the internal organs of the ducks, viral replication and shedding through cloaca were higher in H5N8‐infected ducks than in H5N6‐infected ducks. The findings of this study provide preliminary information to help estimate the risks involved in further evolution and dissemination of Clade 2.3.4.4 HPAI viruses among wild birds.  相似文献   

5.
European starlings (Sturnus vulgaris), house sparrows (Passer domesticus) and rock pigeons (Columba livia) are all wild birds commonly found in large numbers in and around human dwellings and domestic livestock operations. This study evaluated the susceptibility of these species to three strains of highly pathogenic avian influenza virus (HP AIV) clade 2.3.4.4 isolated in the U.S.. Experimental infection of European starlings and rock pigeons did not result in any overt signs attributable to AIV infection and no virus shedding was detected from the oral and cloacal routes. House sparrows shed by the oral route and exhibited limited mortality. Individuals from all three species seroconverted following infection. These data suggest that none of these birds are a likely potential bridge host for future HP AIV outbreaks but that their seroconversion may be a useful surveillance tool for detection of circulating H5 HP AIV.  相似文献   

6.
Asian‐origin H5N8 highly pathogenic avian influenza (HPAI) viruses of the H5 Goose/Guangdong/96 lineage, clade 2.3.4.4 group B, reached South Africa by June 2017. By the end of that year, 5.4 million layers and broiler chickens died or were culled, with total losses in the poultry industry estimated at US$ 140 million, and thousands of exotic birds in zoological collections, endangered endemic species and backyard poultry and pet birds also perished. The 2017 H5N8 HPAI outbreaks were characterized by two distinct spatial clusters, each associated with specific reassortant viral genotypes. Genotypes 1, 2, 3 and 5 were restricted to the northern regions, spanning the provinces of Limpopo, Gauteng, North West, Mpumalanga, KwaZulu‐Natal and Free State. The second, much larger cluster of outbreaks was in the south, in the Western and Eastern Cape provinces, wherein 2017 and 2018 outbreaks were caused solely by genotype 4. The last confirmed case of H5N8 HPAI in the northern region in 2017 was in early October, and the viruses seemed to disappear over the summer. However, starting in mid‐February 2018, H5N8 HPAI outbreaks resurged in the north. Viruses from two of the eight outbreaks were sequenced, one from an outbreak in quails (Coturnix japonica) in the North West Province, and another from commercial pullets in the Gauteng province. Phylogenetic analysis identified the viruses as a distinct sixth genotype that was most likely a new introduction to South Africa in early 2018.  相似文献   

7.
In Japan during the 2016–2017 winter season, clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIVs) of the H5N6 subtype caused 12 outbreaks in chicken and Muscovy duck farms. These viruses have been circulating in Vietnam and China since 2014. In this study, we evaluated the susceptibility of chicken, Pekin duck (Anas platyrhynchos domesticus) and Muscovy duck (Cairina moschata) to H5N6 HPAIVs that originated in Japan, Vietnam and China. The H5N6 HPAIVs examined in this study were highly lethal to chickens compared with their pathogenicity in Pekin duck and Muscovy duck. One of five chickens infected with A/Muscovy duck/Aomori/1‐3T/2016 (MusDk/Aomori) survived despite viral shedding, although all of the chickens infected with the other viruses died. The 50% chicken lethal dose differed among the Japanese strains that shared the same gene constellation indicating that gene constellation was not a major determinant of pathogenicity in chicken. MusDk/Aomori, A/chicken/Niigata/1‐1T/2016 (Ck/Niigata) and A/duck/Hyogo/1/2016 (Dk/Hyogo) infected all Muscovy ducks inoculated; Ck/Niigata killed 50% of the ducks it infected whereas the other two did not kill any ducks. A/chicken/Japan/AnimalQuarantine‐HE144/2016 (HE144) isolated from chicken meat that originated in China was highly pathogenic to Pekin duck: all of the ducks died within 3.75 days of inoculation. This study shows that the pathogenicity of the clade 2.3.4.4 H5N6 HPAIVs differs not only between hosts but also within the same host species.  相似文献   

8.
Circulation of highly pathogenic avian influenza (HPAI ) viruses poses a continuous threat to animal and public health. After the 2005–2006 H5N1 and the 2014–2015 H5N8 epidemics, another H5N8 is currently affecting Europe. Up to August 2017, 1,112 outbreaks in domestic and 955 in wild birds in 30 European countries have been reported, the largest epidemic by a HPAI virus in the continent. Here, the main epidemiological findings are described. While some similarities with previous HPAI virus epidemics were observed, for example in the pattern of emergence, significant differences were also patent, in particular the size and extent of the epidemic. Even though no human infections have been reported to date, the fact that A/H5N8 has affected so far 1,112 domestic holdings, increases the risk of exposure of humans and therefore represents a concern. Understanding the epidemiology of HPAI viruses is essential for the planning future surveillance and control activities.  相似文献   

9.
The wide geographic spread of Eurasian Goose/Guangdong lineage highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses by wild birds is of great concern. In December 2014, an H5N8 HPAI clade 2.3.4.4 Group A (2.3.4.4A) virus was introduced to North America. Long‐distance migratory wild aquatic birds between East Asia and North America, such as Northern Pintail (Anas acuta ), were strongly suspected of being a source of intercontinental transmission. In this study, we evaluated the pathogenicity, infectivity and transmissibility of an H5N8 HPAI clade 2.3.4.4A virus in Northern Pintails and compared the results to that of an H5N1 HPAI clade 2.3.2.1 virus. All of Northern Pintails infected with either H5N1 or H5N8 virus lacked clinical signs and mortality, but the H5N8 clade 2.3.4.4 virus was more efficient at replicating within and transmitting between Northern Pintails than the H5N1 clade 2.3.2.1 virus. The H5N8‐infected birds shed high titre of viruses from oropharynx and cloaca, which in the field supported virus transmission and spread. This study highlights the role of wild waterfowl in the intercontinental spread of some HPAI viruses. Migratory aquatic birds should be carefully monitored for the early detection of H5 clade 2.3.4.4 and other HPAI viruses.  相似文献   

10.
In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg‐producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017–2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.  相似文献   

11.
Low pathogenic avian influenza viruses circulate in wild birds but are occasionally transmitted to other species, including poultry, mammals and humans. To date, infections with low pathogenic avian influenza viruses of HA subtype 6, HA subtype 7, HA subtype 9 and HA subtype 10 among humans have been reported. However, the epidemiology, genetics and ecology of low pathogenic avian influenza viruses have not been fully understood thus far. Therefore, persistent surveillance of low pathogenic avian influenza virus infections in wild birds and other species is needed. Here, we found a low pathogenic avian influenza virus of the subtype H13N2 (abbreviated as WH42) in black‐tailed gulls in China. All gene sequences of this H13N2 virus were determined and used for subsequent analysis. Phylogenetic analysis of the HA gene and NA gene indicated that WH42 was derived from the Eurasian lineage. We analysed the timing of the reassortment events and found that WH42 was a reassortant whose genes were transferred from avian influenza viruses circulating in Asia, Europe and North America. Additionally, WH42 possessed several molecular markers associated with mammalian virulence and mammalian transmissibility. Interestingly, we also found low but detectable haemagglutination inhibition antibodies against H13N2 low pathogenic avian influenza virus in serum samples collected from chickens. Taken together, our findings show that the H13 virus may have been introduced into poultry and that sustainable surveillance in gulls and poultry is required.  相似文献   

12.
Since 2013, H5N6 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for outbreaks in poultry and wild birds around Asia. H5N6 HPAIV is also a public concern due to sporadic human infections being reported in China. In the current study, we isolated an H5N6 HPAIV strain (A/Muscovy duck/Long An/AI470/2018; AI470) from an outbreak at a Muscovy duck farm in Long An Province in Southern Vietnam in July 2018 and genetically characterized it. Basic Local Alignment Search Tool (BLAST) analysis revealed that the eight genomic segments of AI470 were most closely related (99.6%–99.9%) to A/common gull/Saratov/1676/2018 (H5N6), which was isolated in October 2018 in Russia. Furthermore, AI470 also shared 99.4%–99.9% homology with A/Guangxi/32797/2018, an H5N6 HPAIV strain that infected humans in China in 2018. Phylogenetic analyses of the entire genome showed that AI470 was directly derived from H5N6 HPAIVs that were in South China from 2015 to 2018 and clustered with four H5N6 HPAIV strains of human origin in South China from 2017 to 2018. This indicated that AI470 was introduced into Vietnam from China. In addition, molecular characteristics related to mammalian adaptation among the recent human H5N6 HPAIV viruses, except PB2 E627K, were shared by AI470. These findings are cause for concern since H5N6 HPAIV strains that possess a risk of human infection have crossed the Chinese border.  相似文献   

13.
In December 2016, low pathogenic avian influenza (LPAI) caused by an H7N6 subtype was confirmed in a grow‐out turkey farm located in Valparaiso Region, Chile. Depopulation of exposed animals, zoning, animal movement control and active surveillance were implemented to contain the outbreak. Two weeks later, a second grow‐out turkey farm located 70 km north of the first site was also infected by H7N6 LPAI, which subsequently spilled over to one backyard poultry flock. The virus involved in the outbreak shared a close genetic relationship with Chilean aquatic birds’ viruses collected in previous years. The A/turkey/Chile/2017(H7N6) LPAI virus belonged to a native South American lineage. Based on the H7 and most of the internal genes’ phylogenies, these viruses were also closely related to the ones that caused a highly pathogenic avian influenza outbreak in Chile in 2002. Results from this study help to understand the regional dynamics of influenza outbreaks, highlighting the importance of local native viruses circulating in the natural reservoir hosts.  相似文献   

14.
Highly Pathogenic Avian Influenza (HPAI ) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case–control study on broiler duck farms. Forty‐three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI ‐negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3‐km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS ). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: “Farms with ≥7 flocks” (odds ratio [OR ] = 6.99, 95% confidence interval [CI ] 1.34–37.04), “Farm owner with ≥15 years of raising poultry career” (OR  = 7.91, 95% CI 1.69–37.14), “Presence of any poultry farms located within 500 m of the farm” (OR  = 6.30, 95% CI 1.08–36.93) and “Not using a faecal removal service” (OR  = 27.78, 95% CI 3.89–198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re‐occurrence. These findings are relevant to global prevention recommendations and intervention protocols.  相似文献   

15.
H5N1 highly pathogenic avian influenza virus (HPAIV) was first observed in Nigeria in early 2006 and has now spread to more than 17 African countries having severe economic and public health implications. Here, we explore the spatiotemporal patterns of viral dispersal both among West African countries and within Nigeria using sequence data from hemagglutinin (HA) gene region of the virus. Analyses were performed within a statistical Bayesian framework using phylodynamic models on data sets comprising of all publically available HA sequence data collected from seven West African countries and Egypt between 2006 and 2015. Our regional‐level analyses indicated that H5N1 in West Africa originated in Nigeria in three geopolitical regions, specifically north central and north‐east, where backyard poultry and wild birds are in frequent contact, as well as south‐west, a major commercial poultry area, then dispersed to West African countries. We inferred significant virus dispersal routes between Niger and Nigeria on one side and Burkina Faso, Ivory Coast, Ghana and Egypt on the other. Furthermore, south‐west Nigeria identified as a primary source for virus dispersal within Nigeria as well as to Niger in 2006 and 2008. Niger was an important epicentre for the virus spread into other West African countries in 2015. Egyptian introductions from West Africa were sporadic and resulted most likely from poultry trade with Nigeria rather than contact with infected wild birds. Our inferred viral dispersal routes reflected the large‐scale unrestricted movements of infected poultry in the region. Our study illustrates the ability of phylodynamic models to trace important HPAIV dispersal routes at a regional and national level. Our results have clear implications for the control and prevention of this pathogen across scales and will help improve molecular surveillance of transboundary HPAIVs.  相似文献   

16.
In the Netherlands, three commercial poultry farms and two hobby holdings were infected with highly pathogenic avian influenza (HPAI) H5N6 virus in the winter of 2017–2018. This H5N6 virus is a reassortant of HPAI H5N8 clade 2.3.4.4 group B viruses detected in Eurasia in 2016. H5N6 viruses were also detected in several dead wild birds during the winter. However, wild bird mortality was limited compared to the caused by the H5N8 group B virus in 2016–2017. H5N6 virus was not detected in wild birds after March, but in late summer infected wild birds were found again. In this study, the complete genome sequences of poultry and wild bird viruses were determined to study their genetic relationship. Genetic analysis showed that the outbreaks in poultry were not the result of farm‐to‐farm transmissions, but rather resulted from separate introductions from wild birds. Wild birds infected with viruses related to the first outbreak in poultry were found at short distances from the farm, within a short time frame. However, no wild bird viruses related to outbreaks 2 and 3 were detected. The H5N6 virus isolated in summer shares a common ancestor with the virus detected in outbreak 1. This suggests long‐term circulation of H5N6 virus in the local wild bird population. In addition, the pathogenicity of H5N6 virus in ducks was determined, and compared to that of H5N8 viruses detected in 2014 and 2016. A similar high pathogenicity was measured for H5N6 and H5N8 group B viruses, suggesting that biological or ecological factors in the wild bird population may have affected the mortality rates during the H5N6 epidemic. These observations suggest different infection dynamics for the H5N6 and H5N8 group B viruses in the wild bird population.  相似文献   

17.
The H5N8 highly pathogenic avian influenza viruses (HPAIVs) belonging to clade 2.3.4.4 spread from Eastern China to Korea in 2014 and caused outbreaks in domestic poultry until 2016. To understand how H5N8 HPAIVs spread at host species level in Korea during 2014–2016, a Bayesian phylogenetic analysis was used for ancestral state reconstruction and estimation of the host transition dynamics between wild waterfowl, domestic ducks and chickens. Our data support that H5N8 HPAIV most likely transmitted from wild waterfowl to domestic ducks, and then maintained in domestic ducks followed by dispersal of HPAIV from domestic ducks to chickens, suggesting domestic duck population plays a central role in the maintenance, amplification and spread of wild HPAIV to terrestrial poultry in Korea.  相似文献   

18.
Low pathogenic avian influenza virus (LPAIV) is an important zoonotic pathogen. Migratory birds are the natural reservoir for all 16 haemagglutinin (HA) and nine neuraminidase (NA) subtypes of LPAIV. Surveillance of LPAIV in migratory waterfowl and poultry is important for animal and public health. An understanding of the ecology and epidemiology of LPAI viruses in their reservoirs is beneficial for routine surveillance projects. Here, we report the isolation of an H13N8 LPAIV from black‐tailed gulls in eastern China. Full genome sequences of this isolate were determined. Genetic analysis of the HA and NA segments of this isolate showed that this H13N8 LPAIV was derived from the Eurasian lineage. Additionally, we speculate that this H13N8 LPAIV was a reassortant between the North American and Eurasian lineages. Interestingly, we identified amino acid motifs responsible for increased virulence or transmission of influenza viruses in mammals. We also found weak but measurable haemagglutination inhibition antibody titers against H13N8 virus in serum samples collected from chickens. These results suggest that continued surveillance for LPAI viruses in migratory birds and poultry is required.  相似文献   

19.
Effective control of avian diseases in domestic populations requires understanding of the transmission dynamics facilitating viral emergence and spread. In 2016–17, Italy experienced a significant avian influenza epidemic caused by a highly pathogenic A(H5N8) virus, which affected domestic premises housing around 2.7 million birds, primarily in the north‐eastern regions with the highest density of poultry farms (Lombardy, Emilia‐Romagna and Veneto). We perform integrated analyses of genetic, spatiotemporal and host data within a Bayesian phylogenetic framework. Using continuous and discrete phylogeography, we estimate the locations of movements responsible for the spread and persistence of the epidemic. The information derived from these analyses on rates of transmission between regions through time can be used to assess the success of control measures. Using an approach based on phylogenetic–temporal distances between domestic cases, we infer the presence of cryptic wild bird‐mediated transmission, information that can be used to complement existing epidemiological methods for distinguishing transmission within the domestic population from incursions across the wildlife–domestic interface, a common challenge in veterinary epidemiology. Spatiotemporal reconstruction of the epidemic reveals a highly skewed distribution of virus movements with a high proportion of shorter distance local movements interspersed with occasional long‐distance dispersal events associated with wild birds. We also show how such inference be used to identify possible instances of human‐mediated movements where distances between phylogenetically linked domestic cases are unusually high.  相似文献   

20.
Wild and domestic aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). All subtypes of AIVs, including 16 hemagglutinin (HA) and nine neuraminidase (NA), have been isolated from the waterfowls. The H5 viruses in wild birds display distinct biological differences from their highly pathogenic H5 counterparts. Here, we isolated seven H5N3 AIVs including three from wild birds and four from domestic ducks in China from 2015 to 2018. The isolation sites of all the seven viruses were located in the region of the East Asian‐Australasian Migratory Flyway. Phylogenetic analysis indicated that the surface genes of these viruses originated from the wild bird H5 HA subtype and the N3 Eurasian lineage. The internal genes of the seven H5N3 isolates are derived from the five gene donors isolated from the wild birds or ducks in Eastern‐Asia region. They were also divided into five genotypes according to their surface genes and internal gene combinations. Interestingly, two of the seven H5N3 viruses contributed their partial internal gene segments (PB1, M and NS) to the newly emerged H7N4 reassortants, which have caused first human H7N4 infection in China in 2018. Moreover, we found that the H5N3 virus used in this study react with the anti‐serum of the H5 subtype vaccine isolate (Re‐11 and Re‐12) and reacted well with the Re‐12 anti‐serum. Our findings suggest that worldwide intensive surveillance and the H5 vaccination (Re‐11 and Re‐12) in domestic ducks are needed to monitor the emergence of novel H5N3 reassortants in wild birds and domestic ducks and to prevent H5N3 viruses transmission from the apparently healthy wild birds and domestic ducks to chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号