首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
在InP基异质结InGaAsP多量子阱(MQW)结构上溅射Cu/SiO2复合层,开展了量子阱混杂(QWI)材料的实验研究。经快速退火(RTA),实现了比常规无杂质空位扩散(IFVD)方法更大的带隙波长蓝移量。在750℃、200s的退火条件下,获得最大172nm的波长蓝移;通过改变退火条件,可实现不同程度的蓝移,满足光子集成技术中不同器件对带隙波长的需求。为了验证其用于光子集成领域的可行性,利用混杂技术分别制备了宽条激光器和单片集成电吸收调制激光器(EML)。在675℃退火温度,80s、120s和200s的退火时间下分别实现了61、81和98nm的波长蓝移;并且,相应的宽条激光器的电激射光(EL)谱偏调量与其材料的光致荧光(PL)谱偏调量基本一致。在675℃、120s退火条件下,制备的EML集成器件中,电吸收调制器(EAM)和分布反馈(DFB)激光器区的蓝移量分别83nm和23.7nm,相对带隙差为59.3nm。EML集成器件在激光器注入电流为100mA、调制器零偏压时出光功率达到9.6mW;EAM施加-5V反向偏压时静态消光比达16.4dB。  相似文献   

2.
采用PECVD技术在1.55μm InGaAsP—InP MQW激光器结构的材料上沉积SiO2薄膜和含磷组分的SiO(P)电介质薄膜,经过快速热退火(RTA)后,样品的PL谱测试表明:覆盖有普通SiO2薄膜的样品蓝移量在5~74nm,而覆盖SiO(P)薄膜的样品呈现出341nm的大蓝移量。对SiO(P)薄膜的样品经红外光谱及XPS谱分析后证明,该膜的结构为SiOP,存在Si-O和P—O键,Si和P为正价键,其结合能分别为103.6eV和134.6eV。在退火过程中SiOP膜存在P原子的外扩散,它强烈地影响量子阱混合的效果,该SiOP膜明显区别于SiO2电介质薄膜。  相似文献   

3.
自量子阱混杂发现以来,其在这几十年的发展中取得了巨大进步。在各种量子阱混杂的方法中,无杂质空位扩散诱导量子阱混杂(IFVD)以其独特的优势获得了细致的研究和广泛的应用。主要从混杂原理、介质膜类型、材料系、低维量子点中的应用和器件应用等几个方面来全面分析IFVD研究和应用现状。  相似文献   

4.
报道了使用SiO2介质膜导致的无杂质空位扩散实现InGaAsP多量子阱混杂的实验,得到200nm的最大带隙波长蓝移.另外,采用量子阱混杂制作了蓝移的FP腔激光器,其性能与未混杂的激光器相当.  相似文献   

5.
为了获得更好的量子阱混杂效果,深入探讨了不同Al组分的扩散阻挡层对无杂质空位诱导量子阱混杂的影响。首先在两种不同Al组分外延片表面上分别生长了一层200 nm厚的SiO2介质薄膜,然后在865~905℃温度范围内,进行了90 s的高温快速热退火处理。实验结果表明,低铝结构的波长蓝移量更大,且光致发光(Photoluminescence, PL)谱的强度下降更小,这说明在无杂质空位诱导量子阱混杂中,外延结构中的Al和Ga对点缺陷扩散的影响是不同的,Ga更有利于点缺陷的扩散。研究结果为无杂质空位诱导量子阱混杂的理论研究及器件的外延结构设计提供了参考。  相似文献   

6.
使用SiO_2介质膜实现InGaAsP量子阱混杂   总被引:1,自引:1,他引:0  
张靖  陆羽  王圩 《半导体学报》2003,24(8):785-788
报道了使用SiO2 介质膜导致的无杂质空位扩散实现InGaAsP多量子阱混杂的实验,得到2 0 0nm的最大带隙波长蓝移.另外,采用量子阱混杂制作了蓝移的FP腔激光器,其性能与未混杂的激光器相当  相似文献   

7.
8.
对晶格与InP匹配的InGaAsP超晶格结构外延片,运用等离子增强化学气相沉积法镀SiO2膜,随后用碘钨灯快速热退火,进行无杂质空位扩散(IFVD)技术的实验研究,测量光致发光谱后得到了最大50nm的峰值位置蓝移;表明在没有掺杂和没有应变的情况下,IFVD仍有较好的处理量子阱材料的能力.对影响IFVD工艺的重复性因素进行了探讨.  相似文献   

9.
为了解决由于激光器腔面处的光吸收引起的腔面光学灾变损伤(COD),采用无杂质空位扩散(IFVD)法,研究了由SiO2电介质层诱导的InGaAs/AlGaAs量子阱结构的带隙蓝移。使用等离子化学气相沉积(PECVD)在InGaAs/AlGaAs量子阱的表面生长SiO2电介质层;然后采用IFVD在N2环境下进行高温退火实验,从而实现量子阱混杂(QWI)。实验结果表明:蓝移量的大小随退火时间和电介质层厚度的变化而变化,样品覆盖的电介质层越厚,在相同的退火温度下承受的退火时间越长,得到的蓝移量也越大。然而,在高温退火中的时间相对较长时,退火对量子阱造成的损坏相当大。高温短时循环退火,能够在保护量子阱晶体质量的同时实现QWI。通过在850℃退火6min下循环退火5次,得到了46nm的PL蓝移,且PL峰值保持在原样品的80%以上。  相似文献   

10.
纳米柱GaN基多量子阱(MQW)拥有量子尺寸效应以及应变释放等特性,对于提高GaN基发光二极管(LED)的发光效率具有重要意义.采用快速热退火(RTA)形成的自组装Ni纳米颗粒作为刻蚀掩膜,利用电感耦合等离子体反应离子刻蚀(ICP-RIE)制备纳米柱InGaN/GaN MQW.通过改变RTA温度发现在800℃以上才能有效形成Ni纳米颗粒掩膜.不同的ICP和射频(RF)功率条件下制备的纳米柱MQW光致发光强度相比于相同结构的平面MQW会发生显著变化.通过优化ICP-RIE的刻蚀条件,可以获得发光强度显著提高的纳米柱MQW结构.同时,纳米柱MQW中压电极化场的减弱会形成光致发光峰位蓝移.  相似文献   

11.
A quantum well intermixing(QWI) investigation on double quantum well(DQW) structure with two different emitting wavelength caused by phosphorus ion implantation and following rapid thermal annealing (RTA) was carried out by means of photoluminescence(PL). The ion implantation was performed at the energy of 120 kev with the dose ranging from 1 × 1011 cm-2 to 1× 1014 cm-2. The RTA was performed at the temperature of 700 ℃ for 30 s under pure nitrogen protection. The PL measurement implied that the band gap blue-shift from the upper well increases with the ion dose faster than that from lower well and the PL peaks from both QWs remained well separated under the lower dose implantation(~1×1011 cm-2 ) indicating that the implant vacancy distribution affects the QWI. When the ion dose is over ~ 1 × 1012 cm-2 , the band gap blue-shift from both wells increases with the ion dose and finally the two peaks merge together as one peak indicating the ion implantation caused a total intermixing of both quantum wells.  相似文献   

12.
SiO_2膜增强InGaAsP超晶格外延片的量子阱混合   总被引:1,自引:0,他引:1  
黄晓东  黄德修  刘雪峰 《半导体学报》2000,21(11):1107-1110
对晶格与 In P匹配的 In Ga As P超晶格结构外延片 ,运用等离子增强化学气相沉积法镀Si O2 膜 ,随后用碘钨灯快速热退火 ,进行无杂质空位扩散 ( IFVD)技术的实验研究 ,测量光致发光谱后得到了最大 50 nm的峰值位置蓝移 ;表明在没有掺杂和没有应变的情况下 ,IFVD仍有较好的处理量子阱材料的能力 .对影响 IFVD工艺的重复性因素进行了探讨 .  相似文献   

13.
含磷组分薄膜对InGaAsP/InP多量子阱无序处理的影响   总被引:2,自引:0,他引:2  
报道了采用不同的电介质薄膜SiO2、SiOxNy、Si3N4和SiOxPyNz及其组合用于InGaAsP/InP多量子阱材料的包封源.在高纯氮气保护下经850℃、7s的快速退火处理,结果发现:含磷组分SiOxPyNz电介质薄膜包封下的InGaAsP/InP量子阱带隙展宽十分显著,高达224meV,PL谱峰值波长蓝移342nm,半宽较窄仅为25nm,说明量子阱性能保持十分良好,并对此现象的成因做了初步分析.  相似文献   

14.
The effect of rapid thermal annealing (RTA) on important detector characteristics such as dark current, absolute response, noise, and detectivity is investigated for quantum-well infrared photodetectors (QWIP) operating in the 8–12 μm wavelength regime. A comprehensive set of experiments is conducted on QWIPs fabricated from both as-grown and annealed multiple-quantum-well structures. RTA is done at an anneal temperature of 850°C for 30 s using an SiO2 encapsulant. In general, a decrease in performance is observed for RTA QWIPs when compared to the as-grown detectors. The peak absolute response of the annealed QWIPs is lower by almost a factor of four, which results in a factor of four decrease in quantum efficiency. In addition, a degraded noise performance results in a detectivity which is five times lower than that of QWIPs using asgrown structures. Theoretical calculations of the absorption coefficient spectrum are in excellent agreement with the experimental data.  相似文献   

15.
采用Agilent公司的81910A光子全参数测试仪,实验研究了不同组分比的条形InP/In1-xGaxAs1-yPy多量子阱电吸收调制器(MQW-EAM)的色度色散(CD)特性.研究结果表明,Ⅲ-Ⅴ半导体MQW-EAM的CD特性与材料密切相关,并估算了EAM的带宽.因此,对应用于高速光通信系统中的同类型半导体光子器件,所用材料必须尽可能一致,以保证其高速性能的一致性.  相似文献   

16.
用固态分子束外延技术生长了高应变In0.45Ga0.55As/GaAs量子阱材料. 研究了快速热退火对高应变InGaAs/GaAs量子阱材料光学性质的影响. 本文采用假设InGaAs/GaAs量子阱中的In-Ga原子扩散为误差函数扩散并解任意形状量子阱的薛定谔方程的方法,对不同退火温度下InGaAs/GaAs量子阱室温光致发光峰值波长拟合,得到了In原子在高应变InGaAs/GaAs量子阱中的扩散系数以及扩散激活能(0.88eV) .  相似文献   

17.
Post-growth annealing is shown to improve the laser diode quality of GaAs/AlGaAs graded-index separate confinement heterostructure quantum well laser diode structures grown at a nonoptimal substrate temperature lower than 680°C by molecular beam epitaxy. Reduction by a factor of up to three in the threshold current was accompanied by a reduction in the interface trap density. The reduced threshold current is still higher than that of laser diodes grown at the optimal temperatures which are between 680 and 695°C. The improvement in laser diode performance is ascribed to the reduction of interface nonradiative recombination centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号