首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We present a new approach for the covalent inhibition of HIV‐1 integrase (IN) by an LEDGF/p75‐derived peptide modified with an N‐terminal succinimide group. The covalent inhibition is mediated by direct binding of the succinimide to the amine group of a lysine residue in IN. The peptide serves as a specific recognition sequence for the target protein, while the succinimide serves as the binding moiety. The combination of a readily synthesizable peptide precursor with easy and efficient binding to the target protein makes this approach a promising new strategy for designing lead compounds.  相似文献   

4.
The interaction of HIV-1 integrase and the cellular Ku70 protein is necessary for HIV replication due to its positive effect on post-integration DNA repair. We have previously described in detail the Ku70 binding site within integrase. However, the integrase binding site in Ku70 remained poorly characterized. Here, using a peptide fishing assay and site-directed mutagenesis, we have identified residues I72, S73, and I76 of Ku70 as key for integrase binding. The molecular dynamics studies have revealed a possible way for IN to bind to Ku70, which is consistent with experimental data. According to this model, residues I72 and I76 of Ku70 form a “leucine zipper” with integrase residues, and, therefore, their concealment by low-molecular-weight compounds should impede the Ku70 interaction with integrase. We have identified such compounds by molecular docking and have confirmed their capacity to inhibit the formation of the integrase complex with Ku70. Our data demonstrate that the site of IN binding within Ku70 identified in the present work may be used for further search for inhibitors of the integrase binding to Ku70.  相似文献   

5.
6.
The p75 splice variant of lens epithelium‐derived growth factor (LEDGF) is a 75 kDa protein, which is recruited by the human immunodeficiency virus (HIV) to tether the pre‐integration complex to the host chromatin and promote integration of proviral DNA into the host genome. We designed a series of small cyclic peptides that are structural mimics of the LEDGF binding domain, which interact with integrase as potential binding inhibitors. Herein we present the X‐ray crystal structures, NMR studies, SPR analysis, and conformational studies of four cyclic peptides bound to the HIV‐1 integrase core domain. Although the X‐ray studies show that the peptides closely mimic the LEDGF binding loop, the measured affinities of the peptides are in the low millimolar range. Computational analysis using conformational searching and free energy calculations suggest that the low affinity of the peptides is due to mismatch between the low‐energy solution and bound conformations.  相似文献   

7.
8.
The tautomerism and corresponding transition states of four authentic HIV‐1 integrase (IN) inhibitor prototype structures, α,γ‐diketo acid, α,γ‐diketotriazole, dihydroxypyrimidine carboxamide and 4‐quinolone‐3‐carboxylic acid, were investigated at the B3LYP/6‐311++G(d,p) level in vacuum and in aqueous solvent models. To study the possible chelating modes of these tautomers with two magnesium ions—a process important for inhibition—we modeled an assembly of three formic acids, four water molecules and two Mg2+ ions as a template mimicking the binding site of IN. The DFT calculation results show that deprotonated enolized or phenolic hydroxy groups of specific tautomers in water lead to the most stable complexes, with the two magnesium ions separated by a distance of approximately 3.70 to 3.74 Å, and with each magnesium ion at the center of an octahedron. The drug candidate GS‐9137 (Gilead), based on the 4‐quinolone‐3‐carboxylic acid scaffold, and its analogues form similar but different chelating modes. When one water molecule in the complex is replaced by a methanol molecule, which mimics the terminal 3′‐OH of viral DNA, a good chelating complex is retained. This supports the hypothesis that, in the binding site of IN after 3′‐processing, the terminal 3′‐OH of viral DNA interacts with one Mg2+ by chelation.  相似文献   

9.
10.
Considerable efforts have been made to the development of small‐molecule inhibitors of antiapoptotic B‐cell lymphoma 2 (Bcl‐2) family proteins (such as Bcl‐2, Bcl‐xL, and Mcl‐1) as a new class of anticancer therapies. Unlike general inhibitors of the entire family, selective inhibitors of each member protein can hopefully reduce the adverse side effects in chemotherapy treatments of cancers overexpressing different Bcl‐2 family proteins. In this study, we designed four series of benzylpiperazine derivatives as plausible Bcl‐2 inhibitors based on the outcomes of a computational algorithm. A total of 81 compounds were synthesized, and their binding affinities to Bcl‐2, Bcl‐xL, and Mcl‐1 measured. Encouragingly, 22 compounds exhibited binding affinities in the micromolar range (Ki<20 μM ) to at least one target protein. Moreover, some compounds were observed to be highly selective binders to Mcl‐1 with no detectable binding to Bcl‐2 or Bcl‐xL, among which the most potent one has a Ki value of 0.18 μM for Mcl‐1. Binding modes of four selected compounds to Mcl‐1 and Bcl‐xL were derived through molecular docking and molecular dynamics simulations. It seems that the binding affinity and selectivity of these compounds can be reasonably interpreted with these models. Our study demonstrated the possibility for obtaining selective Mcl‐1 inhibitors with relatively simple chemical scaffolds. The active compounds identified by us could be used as lead compounds for developing even more potent selective Mcl‐1 inhibitors with potential pharmaceutical applications.  相似文献   

11.
12.
Targeting protein–protein interactions, such as the HIV‐1 gp120—CD4 interface, has become a cutting‐edge approach in the current drug discovery scenario. Many small molecules have been developed so far as inhibitors of the interaction between CD4 and HIV‐1 gp120. However, due to a variety of reasons such as solubility, drug toxicity and drug resistance, these inhibitors have failed to prove clinically useful. As such, the identification of novel compounds that bind to protein–protein interactions is still a research area of considerable interest. Here, a structure‐based virtual screening approach was successfully applied with the aim of identifying novel HIV‐1 entry inhibitors targeting the Phe 43 pocket of HIV‐1 gp120. Several compounds able to inhibit viral replication in cell culture were identified, with the best agent endowed with an EC50 value of 0.9 μM . Inactivity of all the identified hits toward a mutant (Met 475 Ile) strain strongly suggests that they interact in the Phe 43 cavity of gp120, as intended. Remarkably, all of these small molecules have a chemical scaffold unrelated to any known class of entry inhibitors reported thus far. Overall, our strategy led to the identification of four novel chemical scaffolds that inhibit HIV‐1 replication through the destabilization of the HIV‐1 gp120–CD4 interface.  相似文献   

13.
14.
A three‐dimensional model of a complex between HIV‐1 integrase (IN), viral DNA, and metal ions that we recently built was used as a target for a docking method (induced‐fit docking, IFD) that accurately predicts ligand binding modes and concomitant structural changes in the receptor. Six different well‐known integrase strand transfer inhibitors (INSTIs): L‐708,906, L‐731,988, S‐1360, L‐870,810, raltegravir, and elvitegravir were thus used as ligands for our docking simulations. The obtained IFD results are consistent with the mechanism of action proposed for this class of IN inhibitors, that is, metal chelating/binding agents. This study affords new insight into the possible mechanism of inhibition and binding conformations for INSTIs. The impact on our hypothesis of specific mutations associated with IN inhibitor resistance was also evaluated. All these findings might have implications for integrase‐directed HIV‐1 drug discovery efforts.  相似文献   

15.
Playing polo : Small‐molecule inhibitors of polo‐like kinase 1 are mostly ATP‐competitive, and thus face enormous specificity hurdles. This communication explores the concept of inhibiting Plk1 with a small‐molecule inhibitor of the protein–protein interactions required for Plk1 function.

  相似文献   


16.
The therapeutically relevant hypoxia inducible factor HIF‐1α–p300 protein–protein interaction can be orthosterically inhibited with α‐helix mimetics based on an oligoamide scaffold that recapitulates essential features of the C‐terminal helix of the HIF‐1α C‐TAD (C‐terminal transactivation domain). Preliminary SAR studies demonstrated the important role of side‐chain size and hydrophobicity/hydrophilicity in determining potency. These small molecules represent the first biophysically characterised HIF‐1α–p300 PPI inhibitors and the first examples of small‐molecule aromatic oligoamide helix mimetics to be shown to have a selective binding profile. Although the compounds were less potent than HIF‐1α, the result is still remarkable in that the mimetic reproduces only three residues from the 42‐residue HIF‐1α C‐TAD from which it is derived.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号